Spaces:
Running
Running
File size: 3,387 Bytes
29edf23 84669bc 7feda08 29edf23 30196dc 7feda08 936bfca 30196dc 936bfca 7feda08 c93f011 29edf23 c93f011 936bfca 30196dc b3aee5e 4d1390a ea28e08 7feda08 6b18ba5 7feda08 6b18ba5 7feda08 4d1390a 7feda08 776fa07 84669bc 4d1390a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# Import dependencies
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import nltk
from nltk.corpus import wordnet
import spacy
from gensim.models import KeyedVectors
from gensim import downloader as api
from nltk.tokenize import word_tokenize
# Download NLTK data (if not already downloaded)
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet') # Download WordNet
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")
# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
# AI detection function using DistilBERT
def detect_ai_generated(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
# Function to get synonyms using Gensim Word2Vec
def get_synonyms_gensim(word):
try:
synonyms = word_vectors.most_similar(positive=[word], topn=5)
return [synonym[0] for synonym in synonyms]
except KeyError:
return []
# Paraphrasing function using Gensim for synonym replacement
def paraphrase_with_gensim(text):
words = word_tokenize(text)
paraphrased_words = []
for word in words:
synonyms = get_synonyms_gensim(word.lower())
if synonyms:
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(word)
return ' '.join(paraphrased_words)
# Paraphrasing function using spaCy for synonym replacement
def paraphrase_with_spacy(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
synonyms = get_synonyms_gensim(token.text.lower())
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
return ' '.join(paraphrased_words)
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_gensim_button = gr.Button("Paraphrase with Gensim")
paraphrase_spacy_button = gr.Button("Paraphrase with spaCy")
with gr.Column():
output_text = gr.Textbox(label="Output")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
paraphrase_gensim_button.click(paraphrase_with_gensim, inputs=text_input, outputs=output_text)
paraphrase_spacy_button.click(paraphrase_with_spacy, inputs=text_input, outputs=output_text)
# Launch the Gradio app
interface.launch(debug=False)
|