Spaces:
Running
Running
File size: 5,157 Bytes
b0503ee 84669bc b0503ee 7feda08 6ba2176 7fc55d1 96ac1ff 8e09e8c b0503ee 7fc55d1 6ba2176 b0503ee 6ba2176 7feda08 96ac1ff b0503ee 5065a5b b0503ee 3c39506 b0503ee 5065a5b 6f0ffd9 5065a5b 73ae45e 5065a5b 73ae45e 5065a5b 73ae45e 3c39506 5065a5b 73ae45e 5065a5b b0503ee 41941cd ddf9006 d3c4b21 41941cd 96ac1ff b0503ee 5065a5b b0503ee 96ac1ff aed9390 96ac1ff b0503ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from gector.gec_model import GecBERTModel
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Initialize GECToR model for grammar correction
gector_model = GecBERTModel(vocab_path='data/output_vocabulary',
model_paths=['https://grammarly-nlp-data.s3.amazonaws.com/gector/roberta_1_gector.th'],
is_ensemble=False)
# Function to correct grammar using GECToR
def correct_grammar_with_gector(text):
corrected_sentences = []
sentences = [text] # If you want to split into sentences, you can implement that here
for sentence in sentences:
preds = gector_model.handle_batch([sentence])
corrected_sentences.append(preds[0])
return ' '.join(corrected_sentences)
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
# Join the words back into a sentence
paraphrased_sentence = ' '.join(paraphrased_words)
# Capitalize sentences and proper nouns
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
return corrected_text
# Combined function: Paraphrase -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Capitalize sentences and proper nouns
final_text = capitalize_sentences_and_nouns(paraphrased_text)
return final_text
# Gradio app setup with three tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
with gr.Tab("Grammar Correction"):
grammar_input = gr.Textbox(lines=5, label="Input Text")
grammar_button = gr.Button("Correct Grammar")
grammar_output = gr.Textbox(label="Corrected Text")
# Connect the GECToR grammar correction function to the button
grammar_button.click(correct_grammar_with_gector, inputs=grammar_input, outputs=grammar_output)
# Launch the app with all functionalities
demo.launch()
|