File size: 6,982 Bytes
b0503ee
84669bc
b7577da
7feda08
90fff6b
7fc55d1
 
6d0ac04
90fff6b
 
 
 
 
 
 
 
 
7fc55d1
51568dc
6ba2176
90fff6b
6ba2176
 
 
c163eb2
6ba2176
7feda08
a39af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e83484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00f367
3e83484
 
f79e1dd
3e83484
f79e1dd
 
3e83484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fff6b
3e83484
f79e1dd
3e83484
90fff6b
3e83484
90fff6b
 
 
3e83484
90fff6b
 
 
 
3e83484
 
90fff6b
3e83484
847e3e1
a39af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fff6b
c163eb2
90fff6b
 
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
 
 
 
 
aed9390
90fff6b
a39af1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to get synonyms using NLTK WordNet and keep the same grammatical form
def get_synonym(word, pos_tag):
    synsets = wordnet.synsets(word)
    if not synsets:
        return word
    
    for synset in synsets:
        if synset.pos() == pos_tag:  # Match the part of speech
            synonym = synset.lemmas()[0].name()  # Get the first lemma
            # Check if the original word and synonym are in the same form (singular/plural, tense, etc.)
            if word.islower():
                return synonym.lower()
            else:
                return synonym.capitalize()
    return word

# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        # Get the correct POS tag for WordNet
        pos_tag = None
        if token.pos_ == "NOUN":
            pos_tag = wordnet.NOUN
        elif token.pos_ == "VERB":
            pos_tag = wordnet.VERB
        elif token.pos_ == "ADJ":
            pos_tag = wordnet.ADJ
        elif token.pos_ == "ADV":
            pos_tag = wordnet.ADV
        
        if pos_tag:
            synonym = get_synonym(token.text, pos_tag)
            # Ensure that the verb/noun/plural/singular is kept intact
            if token.pos_ == "VERB":
                synonym = token.lemma_ if token.morph.get("Tense") == "Past" else synonym
            elif token.pos_ == "NOUN" and token.tag_ == "NNS":  # Plural nouns
                synonym += 's' if not synonym.endswith('s') else ""
            rephrased_text.append(synonym)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to paraphrase and correct grammar
def paraphrase_and_correct(text):
    paraphrased_text = capitalize_sentences_and_nouns(text)  # Capitalize first to ensure proper noun capitalization
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    
    # Rephrase with synonyms while maintaining grammatical forms
    paraphrased_text = rephrase_with_synonyms(paraphrased_text)
    
    return paraphrased_text

# Function to correct tense errors in a sentence (Tense Correction)
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        # Check for tense correction based on modal verbs
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            # Replace with appropriate verb form
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct singular/plural errors (Singular/Plural Correction)
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            # Check if the noun is singular or plural
            if token.tag_ == "NN":  # Singular noun
                # Look for determiners like "many", "several", "few" to correct to plural
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                # Look for determiners like "a", "one" to correct to singular
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        # Connect the paraphrasing function to the button
        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app with the remaining functionalities
demo.launch(share=True)