Spaces:
Running
Running
File size: 3,954 Bytes
a1c9b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Grammar, Tense, and Singular/Plural Correction Functions
# Correct article errors (e.g., "a apple" -> "an apple")
def check_article_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for i, token in enumerate(tokens):
word, pos = token
if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN':
corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a')
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Correct tense errors (e.g., "She has go out" -> "She has gone out")
def check_tense_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for word, pos in tokens:
if word == "go" and pos == "VB":
corrected_tokens.append("gone")
elif word == "know" and pos == "VB":
corrected_tokens.append("known")
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates")
def check_pluralization_error(text):
tokens = nltk.pos_tag(nltk.word_tokenize(text))
corrected_tokens = []
for word, pos in tokens:
if word == "chocolate" and pos == "NN":
corrected_tokens.append("chocolates")
elif word == "kids" and pos == "NNS":
corrected_tokens.append("kid")
else:
corrected_tokens.append(word)
return ' '.join(corrected_tokens)
# Combined function to correct grammar, tense, and singular/plural errors
def correct_grammar_tense_plural(text):
text = check_article_error(text)
text = check_tense_error(text)
text = check_pluralization_error(text)
return text
# Gradio app setup with three tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=5, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
with gr.Tab("Grammar Correction"):
grammar_input = gr.Textbox(lines=5, label="Input Text")
grammar_button = gr.Button("Correct Grammar")
grammar_output = gr.Textbox(label="Corrected Text")
# Connect the custom grammar, tense, and plural correction function to the button
grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output)
# Launch the app with all functionalities
demo.launch()
|