Spaces:
Running
Running
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import random # Import random for versatile synonym replacement | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Enhanced function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
# Retain the structure of the input text (headings, paragraphs, line breaks) | |
def retain_structure(text): | |
lines = text.split("\n") | |
formatted_lines = [] | |
for line in lines: | |
if line.strip().isupper(): # Heading if all caps | |
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading | |
else: | |
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text | |
return "\n".join(formatted_lines) | |
# Dynamic and versatile synonym replacement | |
def replace_with_synonym(token): | |
pos = None | |
if token.pos_ == "VERB": | |
pos = wordnet.VERB | |
elif token.pos_ == "NOUN": | |
pos = wordnet.NOUN | |
elif token.pos_ == "ADJ": | |
pos = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.lemma_, pos) | |
if synonyms: | |
# Randomly choose a synonym to add more versatility | |
synonym = random.choice(synonyms) | |
if token.tag_ == "VBG": # Present participle (e.g., running) | |
synonym = synonym + 'ing' | |
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle | |
synonym = synonym + 'ed' | |
elif token.tag_ == "VBZ": # Third-person singular present | |
synonym = synonym + 's' | |
return synonym | |
return token.text | |
# Function to rephrase text and replace words with versatile synonyms | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
pos_tag = None | |
if token.pos_ == "NOUN": | |
pos_tag = wordnet.NOUN | |
elif token.pos_ == "VERB": | |
pos_tag = wordnet.VERB | |
elif token.pos_ == "ADJ": | |
pos_tag = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos_tag = wordnet.ADV | |
if pos_tag: | |
synonyms = get_synonyms_nltk(token.text, pos_tag) | |
if synonyms: | |
# Use the dynamic synonym replacement for versatility | |
synonym = replace_with_synonym(token) | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to force capitalization of the first letter of every sentence | |
def force_first_letter_capital(text): | |
sentences = text.split(". ") # Split by period to get each sentence | |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences] | |
return ". ".join(capitalized_sentences) | |
# Function to handle possessive 's and retain original meaning | |
def handle_possessives(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
# If token is a possessive form (e.g., 'Earth's'), retain its original form | |
if token.text.endswith("'s") or token.text == "'s": | |
corrected_text.append(token.text) # Keep it as is, even if a synonym is found | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct tense errors in a sentence | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct singular/plural errors | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(token.lemma_ + 's') | |
else: | |
corrected_text.append(token.text) | |
elif token.tag_ == "NNS": # Plural noun | |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(token.lemma_) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check and correct article errors | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check for and avoid double negatives | |
def correct_double_negatives(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): | |
corrected_text.append("always") | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to ensure subject-verb agreement | |
def ensure_subject_verb_agreement(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb | |
corrected_text.append(token.head.lemma_ + "s") | |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb | |
corrected_text.append(token.head.lemma_) | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct spelling errors and handle None cases | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
corrected_word = spell.correction(word) | |
# If spell.correction returns None, use the original word | |
if corrected_word is None: | |
corrected_word = word | |
corrected_words.append(corrected_word) | |
return ' '.join(corrected_words) | |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure | |
def paraphrase_and_correct(text): | |
# Retain the structure (headings, paragraphs, line breaks) | |
structured_text = retain_structure(text) | |
# Remove meaningless or redundant words first | |
cleaned_text = remove_redundant_words(structured_text) | |
# Capitalize sentences and nouns | |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) | |
# Ensure first letter of each sentence is capitalized | |
paraphrased_text = force_first_letter_capital(paraphrased_text) | |
# Handle possessives properly | |
paraphrased_text = handle_possessives(paraphrased_text) | |
# Apply grammatical corrections | |
paraphrased_text = correct_article_errors(paraphrased_text) | |
paraphrased_text = correct_singular_plural_errors(paraphrased_text) | |
paraphrased_text = correct_tense_errors(paraphrased_text) | |
paraphrased_text = correct_double_negatives(paraphrased_text) | |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) | |
# Rephrase with versatile synonyms while maintaining grammatical forms | |
paraphrased_text = rephrase_with_synonyms(paraphrased_text) | |
# Correct spelling errors | |
paraphrased_text = correct_spelling(paraphrased_text) | |
return paraphrased_text | |
# Gradio app setup with two tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("AI Detection"): | |
t1 = gr.Textbox(lines=5, label='Text') | |
button1 = gr.Button("🤖 Predict!") | |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') | |
score1 = gr.Textbox(lines=1, label='Prob') | |
# Connect the prediction function to the button | |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1]) | |
with gr.Tab("Paraphrasing & Grammar Correction"): | |
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction') | |
button2 = gr.Button("🔄 Paraphrase and Correct") | |
result2 = gr.Textbox(lines=5, label='Corrected Text') | |
# Connect the paraphrasing and correction function to the button | |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2) | |
demo.launch(share=True) # Share=True to create a public link | |