File size: 10,909 Bytes
b0503ee
84669bc
b7577da
7feda08
90fff6b
7fc55d1
 
9ea0d50
124e989
6d0ac04
90fff6b
 
 
9ea0d50
 
 
 
7fc55d1
51568dc
6ba2176
9ea0d50
6ba2176
 
 
fbc26ed
6ba2176
7feda08
59b2b8e
 
 
 
 
124e989
55748cc
 
 
 
 
 
 
124e989
 
 
 
7b6fe3d
124e989
 
 
 
 
7b6fe3d
124e989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6fe3d
124e989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6fe3d
8013380
 
 
 
 
 
 
9ea0d50
1cf3f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90fff6b
7c294cd
92af867
 
 
 
 
2b58aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea0d50
 
 
 
 
 
 
 
 
 
 
 
 
55748cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da5cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124e989
5da5cc3
 
 
 
 
124e989
 
 
5da5cc3
 
 
2b58aa4
5da5cc3
 
2b58aa4
 
5da5cc3
 
 
 
 
90fff6b
5da5cc3
92af867
5da5cc3
 
2b58aa4
5da5cc3
 
90fff6b
 
 
e21ee90
 
5da5cc3
124e989
5da5cc3
 
 
59b2b8e
5da5cc3
124e989
847e3e1
90fff6b
c163eb2
90fff6b
 
 
 
 
 
 
c35eed6
 
 
124e989
 
c35eed6
90fff6b
c35eed6
5da5cc3
aed9390
5da5cc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import random  # Import random for versatile synonym replacement

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Enhanced function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Retain the structure of the input text (headings, paragraphs, line breaks)
def retain_structure(text):
    lines = text.split("\n")
    formatted_lines = []
    
    for line in lines:
        if line.strip().isupper():  # Heading if all caps
            formatted_lines.append(f"# {line.strip()}")  # Treat it as a heading
        else:
            formatted_lines.append(line)  # Otherwise, it's a paragraph or normal text
    
    return "\n".join(formatted_lines)

# Dynamic and versatile synonym replacement
def replace_with_synonym(token):
    pos = None
    if token.pos_ == "VERB":
        pos = wordnet.VERB
    elif token.pos_ == "NOUN":
        pos = wordnet.NOUN
    elif token.pos_ == "ADJ":
        pos = wordnet.ADJ
    elif token.pos_ == "ADV":
        pos = wordnet.ADV
    
    synonyms = get_synonyms_nltk(token.lemma_, pos)
    
    if synonyms:
        # Randomly choose a synonym to add more versatility
        synonym = random.choice(synonyms)
        if token.tag_ == "VBG":  # Present participle (e.g., running)
            synonym = synonym + 'ing'
        elif token.tag_ == "VBD" or token.tag_ == "VBN":  # Past tense or past participle
            synonym = synonym + 'ed'
        elif token.tag_ == "VBZ":  # Third-person singular present
            synonym = synonym + 's'
        return synonym
    return token.text

# Function to rephrase text and replace words with versatile synonyms
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        pos_tag = None
        if token.pos_ == "NOUN":
            pos_tag = wordnet.NOUN
        elif token.pos_ == "VERB":
            pos_tag = wordnet.VERB
        elif token.pos_ == "ADJ":
            pos_tag = wordnet.ADJ
        elif token.pos_ == "ADV":
            pos_tag = wordnet.ADV
        
        if pos_tag:
            synonyms = get_synonyms_nltk(token.text, pos_tag)
            if synonyms:
                # Use the dynamic synonym replacement for versatility
                synonym = replace_with_synonym(token)
                rephrased_text.append(synonym)
            else:
                rephrased_text.append(token.text)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
    sentences = text.split(". ")  # Split by period to get each sentence
    capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
    return ". ".join(capitalized_sentences)

# Function to handle possessive 's and retain original meaning
def handle_possessives(text):
    doc = nlp(text)
    corrected_text = []

    for token in doc:
        # If token is a possessive form (e.g., 'Earth's'), retain its original form
        if token.text.endswith("'s") or token.text == "'s":
            corrected_text.append(token.text)  # Keep it as is, even if a synonym is found
        else:
            corrected_text.append(token.text)

    return ' '.join(corrected_text)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct singular/plural errors
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to check for and avoid double negatives
def correct_double_negatives(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
            corrected_text.append("always")
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":  # Singular noun, should use singular verb
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":  # Plural noun, should not use singular verb
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct spelling errors and handle None cases
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        # If spell.correction returns None, use the original word
        if corrected_word is None:
            corrected_word = word
        corrected_words.append(corrected_word)
    return ' '.join(corrected_words)

# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
def paraphrase_and_correct(text):
    # Retain the structure (headings, paragraphs, line breaks)
    structured_text = retain_structure(text)
    
    # Remove meaningless or redundant words first
    cleaned_text = remove_redundant_words(structured_text)
    
    # Capitalize sentences and nouns
    paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
    
    # Ensure first letter of each sentence is capitalized
    paraphrased_text = force_first_letter_capital(paraphrased_text)
    
    # Handle possessives properly
    paraphrased_text = handle_possessives(paraphrased_text)
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    paraphrased_text = correct_double_negatives(paraphrased_text)
    paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
    
    # Rephrase with versatile synonyms while maintaining grammatical forms
    paraphrased_text = rephrase_with_synonyms(paraphrased_text)
    
    # Correct spelling errors
    paraphrased_text = correct_spelling(paraphrased_text)
    
    return paraphrased_text

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("🔄 Paraphrase and Correct")
        result2 = gr.Textbox(lines=5, label='Corrected Text')

        # Connect the paraphrasing and correction function to the button
        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)  # Share=True to create a public link