Spaces:
Running
Running
# Import dependencies | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import nltk | |
from nltk.corpus import wordnet | |
import spacy | |
from gensim.models import KeyedVectors | |
from gensim import downloader as api | |
from nltk.tokenize import word_tokenize | |
# Download NLTK data (if not already downloaded) | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
nltk.download('wordnet') # Download WordNet | |
# Load spaCy model | |
nlp = spacy.load("en_core_web_sm") | |
# Load a smaller Word2Vec model from Gensim's pre-trained models | |
word_vectors = api.load("glove-wiki-gigaword-50") | |
# Check for GPU and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |
# AI detection function using DistilBERT | |
def detect_ai_generated(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1) | |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated | |
return f"AI-Generated Content Probability: {ai_probability:.2f}%" | |
# Function to get synonyms using Gensim Word2Vec | |
def get_synonyms_gensim(word): | |
try: | |
synonyms = word_vectors.most_similar(positive=[word], topn=5) | |
return [synonym[0] for synonym in synonyms] | |
except KeyError: | |
return [] | |
# Paraphrasing function using Gensim for synonym replacement | |
def paraphrase_with_gensim(text): | |
words = word_tokenize(text) | |
paraphrased_words = [] | |
for word in words: | |
synonyms = get_synonyms_gensim(word.lower()) | |
if synonyms: | |
paraphrased_words.append(synonyms[0]) | |
else: | |
paraphrased_words.append(word) | |
return ' '.join(paraphrased_words) | |
# Paraphrasing function using spaCy for synonym replacement | |
def paraphrase_with_spacy(text): | |
doc = nlp(text) | |
paraphrased_words = [] | |
for token in doc: | |
synonyms = get_synonyms_gensim(token.text.lower()) | |
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words | |
paraphrased_words.append(synonyms[0]) | |
else: | |
paraphrased_words.append(token.text) | |
return ' '.join(paraphrased_words) | |
# Gradio interface definition | |
with gr.Blocks() as interface: | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(lines=5, label="Input Text") | |
detect_button = gr.Button("AI Detection") | |
paraphrase_gensim_button = gr.Button("Paraphrase with Gensim") | |
paraphrase_spacy_button = gr.Button("Paraphrase with spaCy") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output") | |
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text) | |
paraphrase_gensim_button.click(paraphrase_with_gensim, inputs=text_input, outputs=output_text) | |
paraphrase_spacy_button.click(paraphrase_with_spacy, inputs=text_input, outputs=output_text) | |
# Launch the Gradio app | |
interface.launch(debug=False) | |