Spaces:
Running
Running
Shujaat Ali
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,6 @@ import gradio as gr
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
4 |
import torch
|
5 |
import nltk
|
6 |
-
import random
|
7 |
-
import string
|
8 |
|
9 |
# Download NLTK data (if not already downloaded)
|
10 |
nltk.download('punkt')
|
@@ -30,71 +28,6 @@ def detect_ai_generated(text):
|
|
30 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
31 |
return ai_probability
|
32 |
|
33 |
-
# Random text transformations to simulate human-like errors
|
34 |
-
def random_capitalize(word):
|
35 |
-
if word.isalpha() and random.random() < 0.1:
|
36 |
-
return word.capitalize()
|
37 |
-
return word
|
38 |
-
|
39 |
-
def random_remove_punctuation(text):
|
40 |
-
if random.random() < 0.2:
|
41 |
-
text = list(text)
|
42 |
-
indices = [i for i, c in enumerate(text) if c in string.punctuation]
|
43 |
-
if indices:
|
44 |
-
remove_indices = random.sample(indices, min(3, len(indices)))
|
45 |
-
for idx in sorted(remove_indices, reverse=True):
|
46 |
-
text.pop(idx)
|
47 |
-
return ''.join(text)
|
48 |
-
return text
|
49 |
-
|
50 |
-
def random_double_period(text):
|
51 |
-
if random.random() < 0.2:
|
52 |
-
text = text.replace('.', '..', 3)
|
53 |
-
return text
|
54 |
-
|
55 |
-
def random_double_space(text):
|
56 |
-
if random.random() < 0.2:
|
57 |
-
words = text.split()
|
58 |
-
for _ in range(min(3, len(words) - 1)):
|
59 |
-
idx = random.randint(0, len(words) - 2)
|
60 |
-
words[idx] += ' '
|
61 |
-
return ' '.join(words)
|
62 |
-
return text
|
63 |
-
|
64 |
-
def random_replace_comma_space(text, period_replace_percentage=0.33):
|
65 |
-
comma_occurrences = text.count(", ")
|
66 |
-
period_occurrences = text.count(". ")
|
67 |
-
replace_count_comma = max(1, comma_occurrences // 3)
|
68 |
-
replace_count_period = max(1, period_occurrences // 3)
|
69 |
-
comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)]
|
70 |
-
period_indices = [i for i in range(len(text)) if text.startswith(". ", i)]
|
71 |
-
replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices)))
|
72 |
-
replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices)))
|
73 |
-
for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True):
|
74 |
-
if text.startswith(", ", idx):
|
75 |
-
text = text[:idx] + " ," + text[idx + 2:]
|
76 |
-
if text.startswith(". ", idx):
|
77 |
-
text = text[:idx] + " ." + text[idx + 2:]
|
78 |
-
return text
|
79 |
-
|
80 |
-
def transform_paragraph(paragraph):
|
81 |
-
words = paragraph.split()
|
82 |
-
if len(words) > 12:
|
83 |
-
words = [random_capitalize(word) for word in words]
|
84 |
-
transformed_paragraph = ' '.join(words)
|
85 |
-
transformed_paragraph = random_remove_punctuation(transformed_paragraph)
|
86 |
-
transformed_paragraph = random_double_period(transformed_paragraph)
|
87 |
-
transformed_paragraph = random_double_space(transformed_paragraph)
|
88 |
-
transformed_paragraph = random_replace_comma_space(transformed_paragraph)
|
89 |
-
else:
|
90 |
-
transformed_paragraph = paragraph
|
91 |
-
return transformed_paragraph
|
92 |
-
|
93 |
-
def transform_text(text):
|
94 |
-
paragraphs = text.split('\n')
|
95 |
-
transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs]
|
96 |
-
return '\n'.join(transformed_paragraphs)
|
97 |
-
|
98 |
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
99 |
def humanize_text(AI_text):
|
100 |
paragraphs = AI_text.split("\n")
|
@@ -116,14 +49,12 @@ def humanize_text(AI_text):
|
|
116 |
|
117 |
# Main function to handle the overall process
|
118 |
def main_function(AI_text):
|
119 |
-
|
120 |
-
ai_generated_percentage = sum([1 for prob in ai_probabilities if prob > 0.5]) / len(ai_probabilities) * 100
|
121 |
|
122 |
-
#
|
123 |
humanized_text = humanize_text(AI_text)
|
124 |
-
humanized_text = transform_text(humanized_text) # Add randomness to simulate human errors
|
125 |
|
126 |
-
return f"AI-Generated Content: {
|
127 |
|
128 |
# Gradio interface definition
|
129 |
interface = gr.Interface(
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
|
4 |
import torch
|
5 |
import nltk
|
|
|
|
|
6 |
|
7 |
# Download NLTK data (if not already downloaded)
|
8 |
nltk.download('punkt')
|
|
|
28 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
29 |
return ai_probability
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Humanize the AI-detected text using the SRDdev Paraphrase model
|
32 |
def humanize_text(AI_text):
|
33 |
paragraphs = AI_text.split("\n")
|
|
|
49 |
|
50 |
# Main function to handle the overall process
|
51 |
def main_function(AI_text):
|
52 |
+
ai_probability = detect_ai_generated(AI_text)
|
|
|
53 |
|
54 |
+
# Humanize AI text
|
55 |
humanized_text = humanize_text(AI_text)
|
|
|
56 |
|
57 |
+
return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}"
|
58 |
|
59 |
# Gradio interface definition
|
60 |
interface = gr.Interface(
|