Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
-
import random # Import random for versatile synonym replacement
|
10 |
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -30,7 +29,7 @@ def predict_en(text):
|
|
30 |
res = pipeline_en(text)[0]
|
31 |
return res['label'], res['score']
|
32 |
|
33 |
-
#
|
34 |
def get_synonyms_nltk(word, pos):
|
35 |
synsets = wordnet.synsets(word, pos=pos)
|
36 |
if synsets:
|
@@ -38,73 +37,23 @@ def get_synonyms_nltk(word, pos):
|
|
38 |
return [lemma.name() for lemma in lemmas]
|
39 |
return []
|
40 |
|
41 |
-
#
|
42 |
-
def
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
else:
|
50 |
-
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
if token.pos_ == "VERB":
|
58 |
-
pos = wordnet.VERB
|
59 |
-
elif token.pos_ == "NOUN":
|
60 |
-
pos = wordnet.NOUN
|
61 |
-
elif token.pos_ == "ADJ":
|
62 |
-
pos = wordnet.ADJ
|
63 |
-
elif token.pos_ == "ADV":
|
64 |
-
pos = wordnet.ADV
|
65 |
-
|
66 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
67 |
|
68 |
-
|
69 |
-
# Randomly choose a synonym to add more versatility
|
70 |
-
synonym = random.choice(synonyms)
|
71 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
72 |
-
synonym = synonym + 'ing'
|
73 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
74 |
-
synonym = synonym + 'ed'
|
75 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
76 |
-
synonym = synonym + 's'
|
77 |
-
return synonym
|
78 |
-
return token.text
|
79 |
-
|
80 |
-
# Function to rephrase text and replace words with versatile synonyms
|
81 |
-
def rephrase_with_synonyms(text):
|
82 |
-
doc = nlp(text)
|
83 |
-
rephrased_text = []
|
84 |
-
|
85 |
-
for token in doc:
|
86 |
-
pos_tag = None
|
87 |
-
if token.pos_ == "NOUN":
|
88 |
-
pos_tag = wordnet.NOUN
|
89 |
-
elif token.pos_ == "VERB":
|
90 |
-
pos_tag = wordnet.VERB
|
91 |
-
elif token.pos_ == "ADJ":
|
92 |
-
pos_tag = wordnet.ADJ
|
93 |
-
elif token.pos_ == "ADV":
|
94 |
-
pos_tag = wordnet.ADV
|
95 |
-
|
96 |
-
if pos_tag:
|
97 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
98 |
-
if synonyms:
|
99 |
-
# Use the dynamic synonym replacement for versatility
|
100 |
-
synonym = replace_with_synonym(token)
|
101 |
-
rephrased_text.append(synonym)
|
102 |
-
else:
|
103 |
-
rephrased_text.append(token.text)
|
104 |
-
else:
|
105 |
-
rephrased_text.append(token.text)
|
106 |
-
|
107 |
-
return ' '.join(rephrased_text)
|
108 |
|
109 |
# Function to remove redundant and meaningless words
|
110 |
def remove_redundant_words(text):
|
@@ -202,6 +151,34 @@ def correct_article_errors(text):
|
|
202 |
corrected_text.append(token.text)
|
203 |
return ' '.join(corrected_text)
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Function to check for and avoid double negatives
|
206 |
def correct_double_negatives(text):
|
207 |
doc = nlp(text)
|
@@ -235,6 +212,56 @@ def correct_spelling(text):
|
|
235 |
corrected_words.append(corrected_word)
|
236 |
return ' '.join(corrected_words)
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
239 |
def paraphrase_and_correct(text):
|
240 |
# Retain the structure (headings, paragraphs, line breaks)
|
@@ -259,13 +286,16 @@ def paraphrase_and_correct(text):
|
|
259 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
260 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
261 |
|
262 |
-
# Rephrase with
|
263 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
264 |
|
265 |
# Correct spelling errors
|
266 |
paraphrased_text = correct_spelling(paraphrased_text)
|
267 |
|
268 |
-
|
|
|
|
|
|
|
269 |
|
270 |
# Gradio app setup with two tabs
|
271 |
with gr.Blocks() as demo:
|
@@ -279,8 +309,8 @@ with gr.Blocks() as demo:
|
|
279 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
280 |
|
281 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
282 |
-
t2 = gr.Textbox(lines=5, label='Enter text for
|
283 |
-
button2 = gr.Button("🔄
|
284 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
285 |
|
286 |
# Connect the paraphrasing and correction function to the button
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
29 |
res = pipeline_en(text)[0]
|
30 |
return res['label'], res['score']
|
31 |
|
32 |
+
# Function to get synonyms using NLTK WordNet
|
33 |
def get_synonyms_nltk(word, pos):
|
34 |
synsets = wordnet.synsets(word, pos=pos)
|
35 |
if synsets:
|
|
|
37 |
return [lemma.name() for lemma in lemmas]
|
38 |
return []
|
39 |
|
40 |
+
# Function to dynamically select the most relevant synonym
|
41 |
+
def get_relevant_synonym(word, pos, context):
|
42 |
+
synonyms = get_synonyms_nltk(word, pos)
|
43 |
+
if not synonyms:
|
44 |
+
return word
|
45 |
|
46 |
+
# Basic relevance check: choose the synonym that appears most frequently in similar contexts
|
47 |
+
relevant_synonym = word
|
48 |
+
max_count = 0
|
|
|
|
|
49 |
|
50 |
+
for synonym in synonyms:
|
51 |
+
count = context.lower().count(synonym.lower())
|
52 |
+
if count > max_count:
|
53 |
+
max_count = count
|
54 |
+
relevant_synonym = synonym
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
return relevant_synonym
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Function to remove redundant and meaningless words
|
59 |
def remove_redundant_words(text):
|
|
|
151 |
corrected_text.append(token.text)
|
152 |
return ' '.join(corrected_text)
|
153 |
|
154 |
+
# Function to get the correct synonym while maintaining verb form
|
155 |
+
def replace_with_synonym(token, context):
|
156 |
+
pos = None
|
157 |
+
if token.pos_ == "VERB":
|
158 |
+
pos = wordnet.VERB
|
159 |
+
elif token.pos_ == "NOUN":
|
160 |
+
pos = wordnet.NOUN
|
161 |
+
elif token.pos_ == "ADJ":
|
162 |
+
pos = wordnet.ADJ
|
163 |
+
elif token.pos_ == "ADV":
|
164 |
+
pos = wordnet.ADV
|
165 |
+
|
166 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
167 |
+
|
168 |
+
if synonyms:
|
169 |
+
synonym = get_relevant_synonym(token.text, pos, context)
|
170 |
+
if token.pos_ == "VERB":
|
171 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
172 |
+
synonym = synonym + 'ing'
|
173 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
174 |
+
synonym = synonym + 'ed'
|
175 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
176 |
+
synonym = synonym + 's'
|
177 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
178 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
179 |
+
return synonym
|
180 |
+
return token.text
|
181 |
+
|
182 |
# Function to check for and avoid double negatives
|
183 |
def correct_double_negatives(text):
|
184 |
doc = nlp(text)
|
|
|
212 |
corrected_words.append(corrected_word)
|
213 |
return ' '.join(corrected_words)
|
214 |
|
215 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
216 |
+
def rephrase_with_synonyms(text):
|
217 |
+
doc = nlp(text)
|
218 |
+
rephrased_text = []
|
219 |
+
|
220 |
+
for token in doc:
|
221 |
+
pos_tag = None
|
222 |
+
if token.pos_ == "NOUN":
|
223 |
+
pos_tag = wordnet.NOUN
|
224 |
+
elif token.pos_ == "VERB":
|
225 |
+
pos_tag = wordnet.VERB
|
226 |
+
elif token.pos_ == "ADJ":
|
227 |
+
pos_tag = wordnet.ADJ
|
228 |
+
elif token.pos_ == "ADV":
|
229 |
+
pos_tag = wordnet.ADV
|
230 |
+
|
231 |
+
if pos_tag:
|
232 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
233 |
+
if synonyms:
|
234 |
+
synonym = get_relevant_synonym(token.text, pos_tag, text)
|
235 |
+
if token.pos_ == "VERB":
|
236 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
237 |
+
synonym = synonym + 'ing'
|
238 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
239 |
+
synonym = synonym + 'ed'
|
240 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
241 |
+
synonym = synonym + 's'
|
242 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
243 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
244 |
+
rephrased_text.append(synonym)
|
245 |
+
else:
|
246 |
+
rephrased_text.append(token.text)
|
247 |
+
else:
|
248 |
+
rephrased_text.append(token.text)
|
249 |
+
|
250 |
+
return ' '.join(rephrased_text)
|
251 |
+
|
252 |
+
# Function to retain the structure of the input text (headings, paragraphs, line breaks)
|
253 |
+
def retain_structure(text):
|
254 |
+
lines = text.split("\n")
|
255 |
+
formatted_lines = []
|
256 |
+
|
257 |
+
for line in lines:
|
258 |
+
if line.strip().isupper(): # Heading if all caps
|
259 |
+
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
260 |
+
else:
|
261 |
+
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
262 |
+
|
263 |
+
return "\n".join(formatted_lines)
|
264 |
+
|
265 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
266 |
def paraphrase_and_correct(text):
|
267 |
# Retain the structure (headings, paragraphs, line breaks)
|
|
|
286 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
287 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
288 |
|
289 |
+
# Rephrase with synonyms while maintaining grammatical forms
|
290 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
291 |
|
292 |
# Correct spelling errors
|
293 |
paraphrased_text = correct_spelling(paraphrased_text)
|
294 |
|
295 |
+
# Reapply the structure to the final output
|
296 |
+
final_output = retain_structure(paraphrased_text)
|
297 |
+
|
298 |
+
return final_output
|
299 |
|
300 |
# Gradio app setup with two tabs
|
301 |
with gr.Blocks() as demo:
|
|
|
309 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
310 |
|
311 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
312 |
+
t2 = gr.Textbox(lines=5, label='Enter text for Humanifying')
|
313 |
+
button2 = gr.Button("🔄 Humanifier")
|
314 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
315 |
|
316 |
# Connect the paraphrasing and correction function to the button
|