Spaces:
Running
Running
from langchain_community.llms import HuggingFaceEndpoint | |
import streamlit as st, Utilities as ut | |
from langchain import hub | |
from langchain.agents import AgentExecutor, create_react_agent, load_tools | |
from langchain_community.chat_models.huggingface import ChatHuggingFace | |
#from langchain_openai import OpenAI | |
import os | |
print('HF_TOKEN',os.getenv('HF_TOKEN')) | |
from langchain_community.callbacks.streamlit import ( | |
StreamlitCallbackHandler, | |
) | |
st_callback = StreamlitCallbackHandler(st.container()) | |
initdict={} | |
initdict = ut.get_tokens() | |
#hf_token = initdict["hf_token"] | |
hf_token = os.getenv('HF_TOKEN') | |
reactstyle_prompt = initdict["reactstyle_prompt"] | |
serpapi_api_key = initdict["serpapi_api_key"] | |
llm_repoid = initdict["llm_repoid"] | |
#llm = HuggingFaceEndpoint(repo_id=llm_repoid,temperature=0.9,verbose=True) | |
llm = HuggingFaceEndpoint(repo_id=llm_repoid,huggingfacehub_api_token=hf_token,temperature=0.9,verbose=True) | |
tools = load_tools(["serpapi"],llm=llm,serpapi_api_key=serpapi_api_key) | |
prompt = hub.pull(reactstyle_prompt) | |
agent = create_react_agent(llm, tools, prompt) | |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True) | |
chat_model = ChatHuggingFace(llm=llm) | |
chat_model_with_stop = chat_model.bind(stop=["\nObservation"]) | |
st.title("PatentGuru - Intelligent Chatbot") | |
if prompt := st.chat_input(): | |
st.chat_message("user").write(prompt) | |
with st.chat_message("assistant"): | |
st_callback = StreamlitCallbackHandler(st.container()) | |
response = agent_executor.invoke( | |
{"input": prompt}, {"callbacks": [st_callback], "handle_parsing_errors":True} | |
) | |
st.write(response["output"]) |