gera-richarte's picture
Big refactoring and extensive use of numpy
2ef57a2
raw
history blame
6.59 kB
from datasets import load_dataset, get_dataset_config_names
from functools import partial
from pandas import DataFrame
from PIL import Image
import gradio as gr
import numpy as np
import tqdm
import json
import os
DATASET = "satellogic/EarthView"
DEBUG = False
sets = {
"satellogic": {
"shards" : 3676,
},
"sentinel_1": {
"shards" : 1763,
},
"neon": {
"config" : "default",
"shards" : 607,
"path" : "data",
}
}
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
if shard == -1:
# Trick to open the whole dataset
data_files = None
shards = 100
else:
config = sets[set_name].get("config", set_name)
shards = sets[set_name]["shards"]
path = sets[set_name].get("path", set_name)
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
if DEBUG:
ds = lambda:None
ds.n_shards = 1234
dsi = range(100)
else:
ds = load_dataset(
dataset,
config,
split=split,
cache_dir="dataset",
data_files=data_files,
streaming=True,
token=os.environ.get("HF_TOKEN", None))
dsi = iter(ds)
state["config"] = config
state["dsi"] = dsi
return (
gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
*get_images(batch_size, state),
state
)
def item_to_images(config, item):
metadata = item["metadata"]
if type(metadata) == str:
metadata = json.loads(metadata)
item = {
k: np.asarray(v).astype("uint8")
for k,v in item.items()
if k != "metadata"
}
item["metadata"] = metadata
if config == "satellogic":
item["rgb"] = [
Image.fromarray(image.transpose(1,2,0))
for image in item["rgb"]
]
item["1m"] = [
Image.fromarray(image[0,:,:])
for image in item["1m"]
]
elif config == "sentinel_1":
# Mapping of V and H to RGB. May not be correct
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
i10m = item["10m"]
i10m = np.concatenate(
( i10m,
np.expand_dims(
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
1
).astype("uint8")
),
1
)
item["10m"] = [
Image.fromarray(image.transpose(1,2,0))
for image in i10m
]
elif config == "default":
item["rgb"] = [
Image.fromarray(image.transpose(1,2,0))
for image in item["rgb"]
]
item["chm"] = [
Image.fromarray(image[0])
for image in item["chm"]
]
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
# It just averages each 1/3 of the bads and assigns it to a channel
item["1m"] = [
Image.fromarray(
np.concatenate((
np.expand_dims(np.average(image[:124],0),2),
np.expand_dims(np.average(image[124:247],0),2),
np.expand_dims(np.average(image[247:],0),2))
,2).astype("uint8"))
for image in item["1m"]
]
return item
def get_images(batch_size, state):
config = state["config"]
images = []
metadatas = []
for i in tqdm.trange(batch_size, desc=f"Getting images"):
if DEBUG:
image = np.random.randint(0,255,(384,384,3))
metadata = {"bounds":[[1,1,4,4]], }
else:
try:
item = next(state["dsi"])
except StopIteration:
break
metadata = item["metadata"]
item = item_to_images(config, item)
if config == "satellogic":
images.extend(item["rgb"])
images.extend(item["1m"])
if config == "sentinel_1":
images.extend(item["10m"])
if config == "default":
images.extend(item["rgb"])
images.extend(item["chm"])
images.extend(item["1m"])
metadatas.append(item["metadata"])
return images, DataFrame(metadatas)
def update_shape(rows, columns):
return gr.update(rows=rows, columns=columns)
def new_state():
return gr.State({})
if __name__ == "__main__":
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
state = new_state()
gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
batch_size = gr.Number(10, label = "Batch Size", render=False)
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
table = gr.DataFrame(render = False)
# headers=["Index","TimeStamp","Bounds","CRS"],
gallery = gr.Gallery(
label=DATASET,
interactive=False,
columns=5, rows=2, render=False)
with gr.Row():
dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
config = gr.Dropdown(choices=sets.keys(), label="Config", value="satellogic", )
split = gr.Textbox(label="Split", value="train")
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
gr.Button("Load (minutes)").click(
open_dataset,
inputs=[dataset, config, split, batch_size, state, initial_shard],
outputs=[shard, gallery, table, state])
gallery.render()
with gr.Row():
batch_size.render()
rows = gr.Number(2, label="Rows")
columns = gr.Number(5, label="Coluns")
rows.change(update_shape, [rows, columns], [gallery])
columns.change(update_shape, [rows, columns], [gallery])
with gr.Row():
shard.render()
shard.release(
open_dataset,
inputs=[dataset, config, split, batch_size, state, shard],
outputs=[shard, gallery, table, state])
btn = gr.Button("Next Batch (same shard)", scale=0)
btn.click(get_images, [batch_size, state], [gallery, table])
btn.click()
table.render()
demo.launch(show_api=False)