File size: 1,803 Bytes
80a9adc 2c95b1b 80a9adc 2c95b1b 6282da4 2c95b1b 6282da4 2c95b1b 80a9adc 2c95b1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline
# **1. Load a better QA model** – using RoBERTa-large for higher accuracy.
# (You can switch to 'deepset/roberta-base-squad2-distilled' for speed or others as needed.)
MODEL_NAME = "deepset/roberta-large-squad2"
qa_pipeline = pipeline(
"question-answering",
model=MODEL_NAME,
tokenizer=MODEL_NAME
# You can add device=0 here if using a GPU for faster inference
)
# Define the QA function for Gradio
def answer_question(question, context):
# **2. Use the pipeline with improved parameters**
result = qa_pipeline(
question=question,
context=context,
handle_impossible_answer=True, # allow "no answer" if applicable
top_k=1, # we only want the best answer
max_answer_len=30 # increase if expecting longer answers
)
answer = result.get("answer", "").strip()
score = result.get("score", 0.0)
# **3. Handle cases where no answer is found or confidence is low**
if answer == "" or score < 0.1:
# If the model found no answer or is very unsure, return a fallback message
return "🤔 I’m not sure – the model couldn’t find a clear answer in the text."
return answer
# **4. Set up Gradio interface** with appropriate input/output components
interface = gr.Interface(
fn=answer_question,
inputs=[
gr.components.Textbox(lines=2, label="Question"),
gr.components.Textbox(lines=10, label="Context")
],
outputs=gr.components.Textbox(label="Answer"),
title="Question Answering Demo",
description="Ask a question and get an answer from the provided context. " \
"Supports unanswerable questions."
)
if __name__ == "__main__":
interface.launch()
|