base_chat / app.py
sbicy's picture
Update app.py
3e9ef1a verified
raw
history blame
1.48 kB
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
# Load the model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define the function to generate a response
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_length=70,
do_sample=True,
temperature=0.6,
top_p=0.9,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return response
# Persona-based response function
def persona_response(prompt, persona="You are a helpful talking dog that answers in short, simple phrases."):
full_prompt = f"{persona}: {prompt}"
return generate_response(full_prompt)
# Define Gradio interface function
def chat_interface(user_input, persona="You are a helpful talking dog that answers in short, simple phrases."):
return persona_response(user_input, persona)
# Gradio interface setup
interface = gr.Interface(
fn=chat_interface,
inputs=["text", "text"],
outputs="text",
title="Simple Chatbot",
description="Chat with the bot! Add a persona like 'I am a shopping assistant.'"
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()