Spaces:
Running
Running
"""Gradio demo for schemist.""" | |
from typing import Iterable, List, Optional, Union | |
import csv | |
from io import TextIOWrapper | |
import itertools | |
import json | |
import os | |
import sys | |
csv.field_size_limit(sys.maxsize) | |
from carabiner import cast, print_err | |
from carabiner.pd import read_table | |
from duvida.autoclass import AutoModelBox | |
import gradio as gr | |
import nemony as nm | |
import numpy as np | |
import pandas as pd | |
from rdkit.Chem import Draw, Mol | |
from schemist.converting import ( | |
_FROM_FUNCTIONS, | |
convert_string_representation, | |
_x2mol, | |
) | |
from schemist.tables import converter | |
import torch | |
from duvida.stateless.config import config | |
THEME = gr.themes.Default() | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
CACHE = "./cache" | |
MAX_ROWS = 1000 | |
BATCH_SIZE = 16 | |
HEADER_FILE = os.path.join("sources", "header.md") | |
with open("repos.json", "r") as f: | |
MODEL_REPOS = json.load(f) | |
MODELBOXES = { | |
key: AutoModelBox.from_pretrained(val, cache_dir=os.path.join(CACHE, "duvida")) | |
for key, val in MODEL_REPOS.items() | |
} | |
[mb.to(DEVICE) for mb in MODELBOXES.values()] | |
EXTRA_METRICS = { | |
"log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates, batch_size=BATCH_SIZE, cache=CACHE).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}), | |
"Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates, batch_size=BATCH_SIZE), | |
"Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates, cache=CACHE, batch_size=BATCH_SIZE).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}), | |
"Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, batch_size=BATCH_SIZE, optimality_approximation=True, approximator="squared_jacobian", cache=CACHE).map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}), | |
} | |
with open(os.path.join("example-data", "examples.json"), "r") as f: | |
EXAMPLES = json.load(f) | |
def get_dropdown_options(df, _type = str): | |
if _type == str: | |
cols = list(df.select_dtypes(exclude=[np.number])) | |
else: | |
cols = list(df.select_dtypes([np.number])) | |
non_none = [col for col in cols if col is not None] | |
if len(cols) > 0: | |
default_value = non_none[0] | |
else: | |
default_value = "" | |
print_err(f"Dropdown default value is {default_value}") | |
return gr.Dropdown( | |
choices=cols, | |
interactive=True, | |
value=default_value, | |
visible=True, | |
allow_custom_value=True, | |
) | |
def load_input_data(file: Union[TextIOWrapper, str], return_pd: bool = False) -> pd.DataFrame: | |
file = file if isinstance(file, str) else file.name | |
print_err(f"Loading {file}") | |
df = read_table(file, nrows=MAX_ROWS) | |
print_err(df.head()) | |
if return_pd: | |
return (df, gr.Dataframe(value=df, visible=True)), get_dropdown_options(df, str) | |
else: | |
return gr.Dataframe(value=df, visible=True), get_dropdown_options(df, str) | |
def _clean_split_input(strings: str) -> List[str]: | |
return [ | |
s2.split(":")[-1].strip() | |
for s in strings.split("\n") | |
for s2 in s.split(",") | |
] | |
def _convert_input( | |
strings: str, | |
input_representation: str = 'smiles', | |
output_representation: Union[Iterable[str], str] = 'smiles' | |
) -> List[str]: | |
strings = _clean_split_input(strings) | |
converted = convert_string_representation( | |
strings=strings, | |
input_representation=input_representation, | |
output_representation=output_representation, | |
) | |
return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()} | |
def convert_one( | |
strings: str, | |
input_representation: str = 'smiles', | |
output_representation: Union[Iterable[str], str] = 'smiles', | |
): | |
output_representation = cast(output_representation, to=list) | |
for rep in output_representation: | |
message = f"Converting from {input_representation} to {rep}..." | |
gr.Info(message, duration=3) | |
df = pd.DataFrame({ | |
input_representation: _clean_split_input(strings), | |
}) | |
return convert_file( | |
df=df, | |
column=input_representation, | |
input_representation=input_representation, | |
output_representation=output_representation, | |
) | |
def _prediction_loop( | |
df: pd.DataFrame, | |
predict: Union[Iterable[str], str] = 'smiles', | |
extra_metrics: Optional[Union[Iterable[str], str]] = None | |
) -> pd.DataFrame: | |
species_to_predict = cast(predict, to=list) | |
prediction_cols = [] | |
if extra_metrics is None: | |
extra_metrics = [] | |
else: | |
extra_metrics = cast(extra_metrics, to=list) | |
for species in species_to_predict: | |
message = f"Predicting for species: {species}" | |
print_err(message) | |
gr.Info(message, duration=3) | |
this_modelbox = MODELBOXES[species] | |
this_features = this_modelbox._input_cols | |
this_labels = this_modelbox._label_cols | |
this_prediction_input = ( | |
df | |
.rename(columns={ | |
"smiles": this_features[0], | |
}) | |
.assign(**{label: np.nan for label in this_labels}) | |
) | |
print(this_prediction_input) | |
prediction = this_modelbox.predict( | |
data=this_prediction_input, | |
features=this_features, | |
labels=this_labels, | |
aggregator="mean", | |
cache=CACHE, | |
).with_format("numpy")["__prediction__"].flatten() | |
print(prediction) | |
this_col = f"{species}: predicted MIC (µM)" | |
df[this_col] = np.power(10., -prediction) * 1e6 | |
prediction_cols.append(this_col) | |
this_col = f"{species}: predicted MIC (µg / mL)" | |
df[this_col] = np.power(10., -prediction) * 1e3 * df["mwt"] | |
prediction_cols.append(this_col) | |
for extra_metric in extra_metrics: | |
message = f"Calculating {extra_metric} for species: {species}" | |
print_err(message) | |
gr.Info(message, duration=10) | |
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key]) | |
this_col = f"{species}: {extra_metric}" | |
prediction_cols.append(this_col) | |
print(">>>", this_modelbox._input_training_data) | |
print(">>>", this_modelbox._input_training_data.format) | |
print(">>>", this_modelbox._in_key, this_modelbox._out_key) | |
this_extra = ( | |
EXTRA_METRICS[extra_metric]( | |
this_modelbox, | |
this_prediction_input, | |
) | |
.with_format("numpy") | |
) | |
df[this_col] = this_extra[this_extra.column_names[-1]] | |
return prediction_cols, df | |
def predict_one( | |
strings: str, | |
input_representation: str = 'smiles', | |
predict: Union[Iterable[str], str] = 'smiles', | |
extra_metrics: Optional[Union[Iterable[str], str]] = None, | |
return_pd: bool = False | |
): | |
prediction_df = convert_one( | |
strings=strings, | |
input_representation=input_representation, | |
output_representation=['id', 'pubchem_name', 'pubchem_id', 'smiles', 'inchikey', "mwt", "clogp"], | |
) | |
prediction_cols, prediction_df = _prediction_loop( | |
prediction_df, | |
predict=predict, | |
extra_metrics=extra_metrics, | |
) | |
df = prediction_df[ | |
['id', 'pubchem_name', 'pubchem_id'] | |
+ prediction_cols | |
+ ['smiles', 'inchikey', "mwt", "clogp"] | |
] | |
gradio_opts = { | |
"label": "Predictions", | |
"value": df, | |
"pinned_columns": 3, | |
"visible": True, | |
"wrap": True, | |
"column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3), | |
} | |
if return_pd: | |
return df, gr.DataFrame(**gradio_opts) | |
else: | |
return gr.DataFrame(**gradio_opts) | |
def convert_file( | |
df: pd.DataFrame, | |
column: str = 'smiles', | |
input_representation: str = 'smiles', | |
output_representation: Union[str, Iterable[str]] = 'smiles' | |
): | |
output_representation = cast(output_representation, to=list) | |
message = f"Converting from {input_representation} to {', '.join(output_representation)}..." | |
gr.Info(message, duration=5) | |
print_err(message) | |
print_err(df.head()) | |
errors, df = converter( | |
df=df, | |
column=column, | |
input_representation=input_representation, | |
output_representation=output_representation, | |
) | |
df = df[ | |
output_representation + | |
[col for col in df if col not in output_representation] | |
] | |
all_err = sum(err for key, err in errors.items()) | |
message = ( | |
f"Converted {df.shape[0]} molecules from " | |
f"{input_representation} to {output_representation} " | |
f"with {all_err} errors!" | |
) | |
print_err(message) | |
gr.Info(message, duration=5) | |
return df | |
def predict_file( | |
df: pd.DataFrame, | |
column: str = 'smiles', | |
input_representation: str = 'smiles', | |
predict: str = 'smiles', | |
predict2: Optional[str] = None, | |
extra_metrics: Optional[Union[Iterable[str], str]] = None, | |
return_pd: bool = False | |
): | |
predict = cast(predict, to=list) | |
if predict2 is not None and predict2 in MODELBOXES: | |
predict += cast(predict2, to=list) | |
if extra_metrics is None: | |
extra_metrics = [] | |
else: | |
extra_metrics = cast(extra_metrics, to=list) | |
if df.shape[0] > MAX_ROWS: | |
message = f"Truncating input to {MAX_ROWS} rows" | |
print_err(message) | |
gr.Info(message, duration=15) | |
df = df.iloc[:MAX_ROWS] | |
prediction_df = convert_file( | |
df, | |
column=column, | |
input_representation=input_representation, | |
output_representation=["id", "smiles", "inchikey", "mwt", "clogp"], | |
) | |
prediction_cols, prediction_df = _prediction_loop( | |
prediction_df, | |
predict=predict, | |
extra_metrics=extra_metrics, | |
) | |
left_cols = ['id', 'inchikey'] | |
end_cols = ["smiles", "mwt", "clogp"] | |
main_cols = set( | |
left_cols | |
+ end_cols | |
+ [column] | |
+ prediction_cols | |
) | |
other_cols = list(set(prediction_df) - main_cols) | |
return_cols = ( | |
left_cols | |
+ [column] | |
+ prediction_cols | |
+ other_cols | |
+ end_cols | |
) | |
deduplicated_cols = [] | |
for col in return_cols: | |
if not col in deduplicated_cols: | |
deduplicated_cols.append(col) | |
prediction_df = prediction_df[deduplicated_cols] | |
plot_dropdown = get_dropdown_options(prediction_df, _type="number") | |
plot_dropdown = (plot_dropdown,) * 5 | |
gradio_opts = { | |
"label": "Predictions", | |
"value": prediction_df, | |
"pinned_columns": 3, | |
"visible": True, | |
"wrap": True, | |
"column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3), | |
} | |
if return_pd: | |
return ((prediction_df, gr.Dataframe(**gradio_opts)),) + (plot_dropdown,) | |
else: | |
return (gr.Dataframe(**gradio_opts),) + (plot_dropdown,) | |
def draw_one( | |
df, | |
smiles_col: str = "smiles", | |
legends: Optional[Union[str, Iterable[str]]] = None | |
): | |
if legends is None: | |
legends = ["inchikey", "id", "pubchem_name"] | |
else: | |
legends = [] | |
message = f"Drawing {df.shape[0]} molecules..." | |
gr.Info(message, duration=2) | |
_ids = {col: df[col].tolist() for col in legends} | |
mols = cast(_x2mol(df[smiles_col], "smiles"), to=list) | |
if isinstance(mols, Mol): | |
mols = [mols] | |
return Draw.MolsToGridImage( | |
mols, | |
molsPerRow=min(5, len(mols)), | |
subImgSize=(600, 600), | |
legends=[ | |
"\n".join( | |
_x if _x is not None else "" | |
for _x in items | |
) for items in zip(*_ids.values()) | |
], | |
) | |
def log10_if_all_positive(df, col): | |
if np.all(df[col] > 0.): | |
df[col] = np.log10(df[col]) | |
title = f"log10[ {col} ]" | |
else: | |
title = col | |
return title, df | |
def plot_x_vs_y( | |
df, | |
x: str, | |
y: str, | |
color: Optional[str] = None, | |
): | |
message = f"Plotting x={x}, y={y}, color={color}..." | |
gr.Info(message, duration=10) | |
print_err(df.head()) | |
y_title = y | |
cols = ["id", "inchikey", "smiles", "mwt", "clogp", x, y] | |
if color is not None and color not in cols: | |
cols.append(color) | |
cols = list(set(cols)) | |
x_title, df = log10_if_all_positive(df, x) | |
y_title, df = log10_if_all_positive(df, y) | |
color_title, df = log10_if_all_positive(df, color) | |
return gr.ScatterPlot( | |
value=df[cols], | |
x=x, | |
y=y, | |
color=color, | |
x_title=x_title, | |
y_title=y_title, | |
color_title=color_title, | |
tooltip="all", | |
visible=True, | |
) | |
def plot_pred_vs_observed( | |
df, | |
species: str, | |
observed: str, | |
color: Optional[str] = None, | |
): | |
print_err(df.head()) | |
xcol = f"{species}: predicted MIC (µM)" | |
ycol = observed | |
return plot_x_vs_y( | |
df, | |
x=xcol, | |
y=ycol, | |
color=color, | |
) | |
def download_table( | |
df: pd.DataFrame | |
) -> str: | |
df_hash = nm.hash(pd.util.hash_pandas_object(df).values) | |
filename = os.path.join(CACHE, "downloads", f"predicted-{df_hash}.csv") | |
if not os.path.exists(os.path.dirname(filename)): | |
os.makedirs(os.path.dirname(filename)) | |
df.to_csv(filename, index=False) | |
return gr.DownloadButton(value=filename, visible=True) | |
def _predict_then_draw_then_download( | |
strings: str, | |
input_representation: str = 'smiles', | |
predict: Union[Iterable[str], str] = 'smiles', | |
extra_metrics: Optional[Union[Iterable[str], str]] = None, | |
smiles_col: str = "smiles", | |
legends: Optional[Union[str, Iterable[str]]] = None | |
): | |
df, gr_df = predict_one( | |
strings=strings, | |
input_representation=input_representation, | |
predict=predict, | |
extra_metrics=extra_metrics, | |
return_pd=True, | |
) | |
img = draw_one( | |
df, | |
smiles_col="smiles", | |
) | |
return gr_df, img, download_table(df) | |
def _load_then_predict_then_download_then_reveal_plot( | |
file: str, | |
column: str = 'smiles', | |
input_representation: str = 'smiles', | |
predict: str = 'smiles', | |
predict2: Optional[str] = "", | |
extra_metrics: Optional[Union[Iterable[str], str]] = None | |
): | |
(df, df_gr), col_opts = load_input_data( | |
file, | |
return_pd=True, | |
) | |
(df, df_gr), plot_opts = predict_file( | |
df, | |
column=column, | |
input_representation=input_representation, | |
predict=predict, | |
predict2=None if predict2 == "" else predict2, | |
extra_metrics=extra_metrics, | |
return_pd=True, | |
) | |
print_err(df.head()) | |
return ( | |
df_gr, | |
download_table(df), | |
) + plot_opts | |
def _initial_setup(): | |
"""Set up blocks. | |
""" | |
print_err(f"Duvida config is {config}") | |
print_err(f"Default torch device is {DEVICE}") | |
line_inputs = { | |
"format": gr.Dropdown( | |
label="Input string format", | |
choices=list(_FROM_FUNCTIONS), | |
value="smiles", | |
interactive=True, | |
), | |
"species": gr.CheckboxGroup( | |
label="Species for prediction", | |
choices=list(MODEL_REPOS), | |
value=list(MODEL_REPOS)[:1], | |
interactive=True, | |
), | |
"extras": gr.CheckboxGroup( | |
label="Extra metrics (Doubtscore & Information Sensitivity can increase calculation time to a couple of minutes!)", | |
choices=list(EXTRA_METRICS), | |
value=list(EXTRA_METRICS)[:2], | |
interactive=True, | |
), | |
"strings": gr.Textbox( | |
label="Input", | |
placeholder="Paste your molecule here, one per line.", | |
lines=2, | |
interactive=True, | |
submit_btn=True, | |
), | |
} | |
output_line = gr.DataFrame( | |
label="Predictions (scroll left and right)", | |
interactive=False, | |
visible=True, | |
) | |
download_single = gr.DownloadButton( | |
label="Download predictions", | |
visible=True, | |
) | |
drawing = gr.Image(label="Chemical structures") | |
file_inputs = { | |
"file": gr.File( | |
label="Upload a table of chemical compounds here", | |
file_types=[".xlsx", ".csv", ".tsv", ".txt"], | |
), | |
"column": gr.Dropdown( | |
label="Input column name", | |
choices=[], | |
allow_custom_value=True, | |
visible=True, | |
interactive=True, | |
), | |
"format": gr.Dropdown( | |
label="Input string format", | |
choices=list(_FROM_FUNCTIONS), | |
value="smiles", | |
interactive=True, | |
visible=True, | |
), | |
"species": [ | |
gr.Dropdown( | |
label="Species 1 for prediction", | |
choices=list(MODEL_REPOS), | |
value=list(MODEL_REPOS)[0], | |
interactive=True, | |
allow_custom_value=True, | |
), | |
gr.Dropdown( | |
label="Species 2 for prediction", | |
choices=list(MODEL_REPOS), | |
value=None, | |
interactive=True, | |
allow_custom_value=True, | |
), | |
], | |
"extras": gr.CheckboxGroup( | |
label="Extra metrics (Information Sensitivity can increase calculation time)", | |
choices=list(EXTRA_METRICS), | |
value=list(EXTRA_METRICS)[:2], | |
interactive=True, | |
), | |
} | |
input_dataframe = gr.Dataframe( | |
label="Input data", | |
max_height=500, | |
visible=True, | |
interactive=False, | |
show_fullscreen_button=True, | |
show_search="filter", | |
max_chars=45, | |
) | |
download = gr.DownloadButton( | |
label="Download predictions", | |
visible=False, | |
) | |
plot_button = gr.Button( | |
value="Plot!", | |
visible=False, | |
) | |
left_plot_inputs = { | |
"observed": gr.Dropdown( | |
label="Observed column (y-axis) for left plot", | |
choices=[], | |
value=None, | |
interactive=True, | |
visible=True, | |
allow_custom_value=True, | |
), | |
"color": gr.Dropdown( | |
label="Color for left plot", | |
choices=[], | |
value=None, | |
interactive=True, | |
visible=True, | |
allow_custom_value=True, | |
) | |
} | |
right_plot_inputs = { | |
"x": gr.Dropdown( | |
label="x-axis for right plot", | |
choices=[], | |
value=None, | |
interactive=True, | |
visible=True, | |
allow_custom_value=True, | |
), | |
"y": gr.Dropdown( | |
label="y-axis for right plot", | |
choices=[], | |
value=None, | |
interactive=True, | |
visible=True, | |
allow_custom_value=True, | |
), | |
"color": gr.Dropdown( | |
label="Color for right plot", | |
choices=[], | |
value=None, | |
interactive=True, | |
visible=True, | |
allow_custom_value=True, | |
) | |
} | |
plots = { | |
"left": gr.ScatterPlot( | |
height=500, | |
visible=False, | |
), | |
"right": gr.ScatterPlot( | |
height=500, | |
visible=False, | |
), | |
} | |
return ( | |
line_inputs, | |
output_line, | |
download_single, | |
drawing, | |
file_inputs, | |
input_dataframe, | |
download, | |
plot_button, | |
left_plot_inputs, | |
right_plot_inputs, | |
plots, | |
) | |
if __name__ == "__main__": | |
( | |
line_inputs, | |
output_line, | |
download_single, | |
drawing, | |
file_inputs, | |
input_dataframe, | |
download, | |
plot_button, | |
left_plot_inputs, | |
right_plot_inputs, | |
plots, | |
) = _initial_setup() | |
with gr.Blocks(theme=THEME) as demo: | |
with open(HEADER_FILE, 'r') as f: | |
header_md = f.read() | |
gr.Markdown(header_md) | |
with gr.Tab(label="Paste one per line"): | |
examples = gr.Examples( | |
examples=[ | |
[ | |
"\n".join(eg["strings"]), | |
"smiles", | |
eg["species"], | |
list(EXTRA_METRICS)[:3], | |
] | |
for eg in EXAMPLES["line input examples"] | |
], | |
example_labels=[ | |
eg["label"] for eg in EXAMPLES["line input examples"] | |
], | |
examples_per_page=100, | |
inputs=[ | |
line_inputs["strings"], | |
line_inputs["format"], | |
line_inputs["species"], | |
line_inputs["extras"], | |
], | |
fn=_predict_then_draw_then_download, | |
outputs=[ | |
output_line, | |
drawing, | |
download_single, | |
], | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
for val in line_inputs.values(): | |
val.render() | |
# with gr.Row(): | |
output_line.render() | |
download_single.render() | |
drawing.render() | |
line_inputs["strings"].submit( | |
fn=_predict_then_draw_then_download, | |
inputs=[ | |
line_inputs["strings"], | |
line_inputs["format"], | |
line_inputs["species"], | |
line_inputs["extras"], | |
], | |
outputs=[ | |
output_line, | |
drawing, | |
download_single, | |
], | |
) | |
with gr.Tab(f"Predict on structures from a file (max. {MAX_ROWS} rows, ≤ 2 species)"): | |
plot_dropdowns = list(itertools.chain( | |
left_plot_inputs.values(), | |
right_plot_inputs.values(), | |
)) | |
file_examples = gr.Examples( | |
examples=[ | |
[ | |
eg["file"], | |
eg["column"], | |
"smiles", | |
eg["species"], | |
"", | |
list(EXTRA_METRICS)[:3], | |
] for eg in EXAMPLES["file examples"] | |
], | |
example_labels=[ | |
eg["label"] for eg in EXAMPLES["file examples"] | |
], | |
fn=_load_then_predict_then_download_then_reveal_plot, | |
inputs=[ | |
file_inputs["file"], | |
file_inputs["column"], | |
file_inputs["format"], | |
*file_inputs["species"], | |
file_inputs["extras"], | |
], | |
outputs=[ | |
input_dataframe, | |
download, | |
*plot_dropdowns, | |
], | |
cache_examples=True, ## appears to cause CSV load error | |
cache_mode="eager", | |
) | |
file_inputs["file"].render() | |
with gr.Row(): | |
for key in ("column", "format"): | |
file_inputs[key].render() | |
with gr.Row(): | |
for item in file_inputs["species"]: | |
item.render() | |
file_inputs["extras"].render() | |
go_button2 = gr.Button(value="Predict!") | |
input_dataframe.render() | |
download.render() | |
with gr.Row(): | |
for val in left_plot_inputs.values(): | |
val.render() | |
with gr.Row(): | |
for val in right_plot_inputs.values(): | |
val.render() | |
plot_button.render() | |
with gr.Row(): | |
for val in plots.values(): | |
val.render() | |
file_inputs["file"].upload( | |
fn=load_input_data, | |
inputs=file_inputs["file"], | |
outputs=[ | |
input_dataframe, | |
file_inputs["column"], | |
], | |
) | |
go2_click_event = go_button2.click( | |
_load_then_predict_then_download_then_reveal_plot, | |
inputs=[ | |
file_inputs["file"], | |
file_inputs["column"], | |
file_inputs["format"], | |
*file_inputs["species"], | |
file_inputs["extras"], | |
], | |
outputs=[ | |
input_dataframe, | |
download, | |
*plot_dropdowns, | |
], | |
scroll_to_output=True, | |
).then( | |
lambda: gr.Button(visible=True), | |
outputs=[plot_button], | |
js=True, | |
) | |
file_examples.load_input_event.then( | |
lambda: gr.Button(visible=True), | |
outputs=[plot_button], | |
js=True, | |
) | |
plot_button.click( | |
plot_pred_vs_observed, | |
inputs=[ | |
input_dataframe, | |
file_inputs["species"][0], | |
left_plot_inputs["observed"], | |
left_plot_inputs["color"], | |
], | |
outputs=[plots["left"]], | |
scroll_to_output=True, | |
).then( | |
plot_x_vs_y, | |
inputs=[ | |
input_dataframe, | |
right_plot_inputs["x"], | |
right_plot_inputs["y"], | |
right_plot_inputs["color"], | |
], | |
outputs=[plots["right"]], | |
) | |
demo.queue() | |
demo.launch(share=True) |