File size: 25,998 Bytes
597542d
 
 
028bbd0
597542d
028bbd0
7f2265f
597542d
028bbd0
 
 
597542d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028bbd0
597542d
ed1d3fc
7f2265f
 
43cbc74
6cf1162
 
597542d
7f2265f
 
597542d
 
028bbd0
597542d
 
7f2265f
597542d
 
7f2265f
 
 
 
597542d
 
028bbd0
 
 
7dbc2af
 
 
 
 
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
7dbc2af
7f2265f
028bbd0
43cbc74
 
028bbd0
43cbc74
028bbd0
 
 
 
597542d
 
 
028bbd0
 
 
 
 
597542d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028bbd0
597542d
a11f59c
 
 
b8fe710
597542d
 
 
 
 
 
 
 
 
 
 
 
 
a11f59c
 
597542d
 
a11f59c
 
 
597542d
 
 
 
 
 
 
 
 
 
 
 
a11f59c
597542d
 
 
 
 
 
 
 
 
 
 
43cbc74
597542d
 
0747c7e
a11f59c
597542d
0747c7e
a11f59c
7871646
597542d
 
7871646
 
 
597542d
0747c7e
597542d
 
 
 
 
 
 
 
 
 
 
a11f59c
 
 
 
 
 
 
 
 
028bbd0
ec633d9
a11f59c
 
 
 
 
 
 
 
 
 
 
028bbd0
 
 
 
 
35e1fc5
 
 
 
 
 
0747c7e
35e1fc5
028bbd0
35e1fc5
028bbd0
35e1fc5
597542d
 
 
 
 
 
 
43cbc74
ef937ae
2bfd9e8
597542d
2bfd9e8
597542d
 
 
 
 
 
 
2bfd9e8
597542d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2265f
 
028bbd0
ec633d9
597542d
7f2265f
028bbd0
7f2265f
597542d
 
 
 
7dbc2af
a11f59c
 
 
 
 
 
597542d
 
 
 
 
 
a11f59c
 
 
 
 
36929a8
 
a11f59c
36929a8
 
a11f59c
 
 
2bfd9e8
36929a8
 
a11f59c
36929a8
 
 
 
 
 
 
 
 
 
8e992e9
a4896d3
8e992e9
 
 
 
 
 
0747c7e
8e992e9
597542d
028bbd0
a4896d3
028bbd0
a4896d3
028bbd0
 
597542d
028bbd0
 
 
597542d
028bbd0
 
 
 
 
b8fe710
028bbd0
 
597542d
 
 
 
e8cb587
 
55dea1b
 
 
 
 
 
597542d
 
028bbd0
a11f59c
 
 
 
 
 
 
597542d
a11f59c
 
7dbc2af
a11f59c
 
7dbc2af
 
7f2265f
 
7dbc2af
a11f59c
 
7dbc2af
 
 
a11f59c
 
 
7dbc2af
 
 
a11f59c
 
7dbc2af
 
 
 
 
 
 
 
 
a11f59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597542d
 
 
 
028bbd0
 
 
597542d
 
 
a11f59c
028bbd0
 
 
 
 
 
fd0246d
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd0246d
028bbd0
 
 
 
 
8e992e9
028bbd0
 
 
 
 
 
 
 
 
 
 
 
8e992e9
028bbd0
597542d
028bbd0
597542d
028bbd0
 
 
 
 
 
 
 
597542d
 
 
 
028bbd0
 
597542d
 
 
 
028bbd0
 
0747c7e
597542d
 
 
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4eec7f
028bbd0
 
597542d
028bbd0
 
597542d
 
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2265f
 
 
 
 
028bbd0
7f2265f
 
 
 
 
 
028bbd0
7f2265f
028bbd0
 
43cbc74
53ffacc
 
 
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ffacc
028bbd0
597542d
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597542d
028bbd0
 
 
 
597542d
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf1162
028bbd0
 
 
 
 
 
5e545d6
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
e1979f9
a11f59c
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dbc2af
028bbd0
ed1d3fc
 
 
 
028bbd0
 
 
 
 
 
 
 
6cf1162
028bbd0
a11f59c
028bbd0
 
a11f59c
028bbd0
 
 
 
 
 
 
a11f59c
028bbd0
 
 
ed1d3fc
028bbd0
 
e1979f9
a11f59c
028bbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11f59c
028bbd0
c4eec7f
028bbd0
c4eec7f
 
 
028bbd0
 
 
 
 
c4eec7f
8e992e9
028bbd0
35e1fc5
028bbd0
 
 
 
a11f59c
7dbc2af
33690c0
 
 
 
 
597542d
028bbd0
 
 
 
 
 
 
 
 
35e1fc5
028bbd0
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
"""Gradio demo for schemist."""

from typing import Iterable, List, Optional, Union
import csv
from io import TextIOWrapper
import itertools
import json
import os
import sys

csv.field_size_limit(sys.maxsize)

from carabiner import cast, print_err
from carabiner.pd import read_table
from duvida.autoclass import AutoModelBox
import gradio as gr
import nemony as nm
import numpy as np
import pandas as pd
from rdkit.Chem import Draw, Mol
from schemist.converting import (
    _FROM_FUNCTIONS, 
    convert_string_representation, 
    _x2mol,
)
from schemist.tables import converter
import torch
from duvida.stateless.config import config

THEME = gr.themes.Default()
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

CACHE = "./cache"
MAX_ROWS = 1000
BATCH_SIZE = 16
HEADER_FILE = os.path.join("sources", "header.md")
with open("repos.json", "r") as f:
    MODEL_REPOS = json.load(f)

MODELBOXES = {
    key: AutoModelBox.from_pretrained(val, cache_dir=os.path.join(CACHE, "duvida"))
    for key, val in MODEL_REPOS.items()
}
[mb.to(DEVICE) for mb in MODELBOXES.values()]

EXTRA_METRICS = {
    "log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates, batch_size=BATCH_SIZE, cache=CACHE).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}), 
    "Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates, batch_size=BATCH_SIZE), 
    "Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates, cache=CACHE, batch_size=BATCH_SIZE).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}), 
    "Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, batch_size=BATCH_SIZE, optimality_approximation=True, approximator="squared_jacobian", cache=CACHE).map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}),
}

with open(os.path.join("example-data", "examples.json"), "r") as f:
    EXAMPLES = json.load(f)

def get_dropdown_options(df, _type = str):
    if _type == str:
        cols = list(df.select_dtypes(exclude=[np.number]))
    else:
        cols = list(df.select_dtypes([np.number]))
    non_none = [col for col in cols if col is not None]
    if len(cols) > 0:
        default_value = non_none[0]
    else:
        default_value = ""
    print_err(f"Dropdown default value is {default_value}")
    return gr.Dropdown(
        choices=cols, 
        interactive=True, 
        value=default_value, 
        visible=True,
        allow_custom_value=True,
    )


def load_input_data(file: Union[TextIOWrapper, str], return_pd: bool = False) -> pd.DataFrame:
    file = file if isinstance(file, str) else file.name
    print_err(f"Loading {file}")
    df = read_table(file, nrows=MAX_ROWS)
    print_err(df.head())
    if return_pd:
        return (df, gr.Dataframe(value=df, visible=True)), get_dropdown_options(df, str)
    else:
        return gr.Dataframe(value=df, visible=True), get_dropdown_options(df, str)
    

def _clean_split_input(strings: str) -> List[str]:
    return [
        s2.split(":")[-1].strip() 
        for s in strings.split("\n") 
        for s2 in s.split(",")
    ]


def _convert_input(
    strings: str,
    input_representation: str = 'smiles', 
    output_representation: Union[Iterable[str], str] = 'smiles'
) -> List[str]:
    strings = _clean_split_input(strings)
    converted = convert_string_representation(
        strings=strings, 
        input_representation=input_representation, 
        output_representation=output_representation,
    )
    return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}


def convert_one(
    strings: str,
    input_representation: str = 'smiles', 
    output_representation: Union[Iterable[str], str] = 'smiles',
):
    output_representation = cast(output_representation, to=list)
    for rep in output_representation:
        message = f"Converting from {input_representation} to {rep}..."
        gr.Info(message, duration=3)

    df = pd.DataFrame({
        input_representation: _clean_split_input(strings),
    })

    return convert_file(
        df=df,
        column=input_representation,
        input_representation=input_representation,
        output_representation=output_representation,
    )


def _prediction_loop(
    df: pd.DataFrame,
    predict: Union[Iterable[str], str] = 'smiles', 
    extra_metrics: Optional[Union[Iterable[str], str]] = None
) -> pd.DataFrame:
    species_to_predict = cast(predict, to=list)
    prediction_cols = []
    if extra_metrics is None:
        extra_metrics = []
    else:
        extra_metrics = cast(extra_metrics, to=list)
    for species in species_to_predict:
        message = f"Predicting for species: {species}"
        print_err(message)
        gr.Info(message, duration=3)
        this_modelbox = MODELBOXES[species]
        this_features = this_modelbox._input_cols
        this_labels = this_modelbox._label_cols
        this_prediction_input = (
            df
            .rename(columns={
                "smiles": this_features[0],
            })
            .assign(**{label: np.nan for label in this_labels})
        )
        print(this_prediction_input)
        prediction = this_modelbox.predict(
            data=this_prediction_input,
            features=this_features,
            labels=this_labels,
            aggregator="mean",
            cache=CACHE,
        ).with_format("numpy")["__prediction__"].flatten()
        print(prediction)
        this_col = f"{species}: predicted MIC (µM)"
        df[this_col] = np.power(10., -prediction) * 1e6
        prediction_cols.append(this_col)
        this_col = f"{species}: predicted MIC (µg / mL)"
        df[this_col] = np.power(10., -prediction) * 1e3 * df["mwt"]
        prediction_cols.append(this_col)

        for extra_metric in extra_metrics:
            message = f"Calculating {extra_metric} for species: {species}"
            print_err(message)
            gr.Info(message, duration=10)
            # this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
            this_col = f"{species}: {extra_metric}"
            prediction_cols.append(this_col)
            print(">>>", this_modelbox._input_training_data)
            print(">>>", this_modelbox._input_training_data.format)
            print(">>>", this_modelbox._in_key, this_modelbox._out_key)
            this_extra = (
                EXTRA_METRICS[extra_metric](
                    this_modelbox,
                    this_prediction_input,
                )
                .with_format("numpy")
            )
            df[this_col] = this_extra[this_extra.column_names[-1]]

    return prediction_cols, df


def predict_one(
    strings: str,
    input_representation: str = 'smiles', 
    predict: Union[Iterable[str], str] = 'smiles', 
    extra_metrics: Optional[Union[Iterable[str], str]] = None,
    return_pd: bool = False
):
    prediction_df = convert_one(
        strings=strings,
        input_representation=input_representation,
        output_representation=['id', 'pubchem_name', 'pubchem_id', 'smiles', 'inchikey', "mwt", "clogp"],
    )
    prediction_cols, prediction_df = _prediction_loop(
        prediction_df,
        predict=predict,
        extra_metrics=extra_metrics,
    )
    df = prediction_df[
        ['id', 'pubchem_name', 'pubchem_id'] 
        + prediction_cols 
        + ['smiles', 'inchikey', "mwt", "clogp"]
    ]
    gradio_opts = {
        "label": "Predictions",
        "value": df,
        "pinned_columns": 3,
        "visible": True,
        "wrap": True,
        "column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3),
    }
    if return_pd:
        return df, gr.DataFrame(**gradio_opts)
    else:
        return gr.DataFrame(**gradio_opts)

def convert_file(
    df: pd.DataFrame, 
    column: str = 'smiles',
    input_representation: str = 'smiles',
    output_representation: Union[str, Iterable[str]] = 'smiles'
):
    output_representation = cast(output_representation, to=list)
    message = f"Converting from {input_representation} to {', '.join(output_representation)}..."
    gr.Info(message, duration=5)
    print_err(message)
    print_err(df.head())
    errors, df = converter(
        df=df,
        column=column,
        input_representation=input_representation,
        output_representation=output_representation,
    )
    df = df[
        output_representation +
        [col for col in df if col not in output_representation]
    ]
    all_err = sum(err for key, err in errors.items())
    message = (
        f"Converted {df.shape[0]} molecules from "
        f"{input_representation} to {output_representation} "
        f"with {all_err} errors!"
    )
    print_err(message)
    gr.Info(message, duration=5)
    return df


def predict_file(
    df: pd.DataFrame, 
    column: str = 'smiles',
    input_representation: str = 'smiles',
    predict: str = 'smiles', 
    predict2: Optional[str] = None, 
    extra_metrics: Optional[Union[Iterable[str], str]] = None,
    return_pd: bool = False
):
    predict = cast(predict, to=list)
    if predict2 is not None and predict2 in MODELBOXES:
        predict += cast(predict2, to=list)
    if extra_metrics is None:
        extra_metrics = []
    else:
        extra_metrics = cast(extra_metrics, to=list)

    if df.shape[0] > MAX_ROWS:
        message = f"Truncating input to {MAX_ROWS} rows"
        print_err(message)
        gr.Info(message, duration=15)
        df = df.iloc[:MAX_ROWS]

    prediction_df = convert_file(
        df,
        column=column,
        input_representation=input_representation,
        output_representation=["id", "smiles", "inchikey", "mwt", "clogp"],
    )
    prediction_cols, prediction_df = _prediction_loop(
        prediction_df,
        predict=predict,
        extra_metrics=extra_metrics,
    )
    left_cols = ['id', 'inchikey']
    end_cols = ["smiles", "mwt", "clogp"] 
    main_cols = set(
        left_cols 
        + end_cols
        + [column] 
        + prediction_cols
    )
    other_cols = list(set(prediction_df) - main_cols)
    return_cols = (
        left_cols 
        + [column] 
        + prediction_cols 
        + other_cols 
        + end_cols
    )
    deduplicated_cols = []
    for col in return_cols:
        if not col in deduplicated_cols:
            deduplicated_cols.append(col)
    prediction_df = prediction_df[deduplicated_cols]

    plot_dropdown = get_dropdown_options(prediction_df, _type="number")
    plot_dropdown = (plot_dropdown,) * 5
    gradio_opts = {
        "label": "Predictions",
        "value": prediction_df,
        "pinned_columns": 3,
        "visible": True,
        "wrap": True,
        "column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3),
    }

    if return_pd:
        return ((prediction_df, gr.Dataframe(**gradio_opts)),) + (plot_dropdown,)
    else:
        return (gr.Dataframe(**gradio_opts),) + (plot_dropdown,)


def draw_one(
    df,
    smiles_col: str = "smiles",
    legends: Optional[Union[str, Iterable[str]]] = None
):
    if legends is None:
        legends = ["inchikey", "id", "pubchem_name"]
    else:
        legends = []
    message = f"Drawing {df.shape[0]} molecules..."
    gr.Info(message, duration=2)
    _ids = {col: df[col].tolist() for col in legends}
    mols = cast(_x2mol(df[smiles_col], "smiles"), to=list)
    if isinstance(mols, Mol):
        mols = [mols]
    return Draw.MolsToGridImage(
        mols,
        molsPerRow=min(5, len(mols)), 
        subImgSize=(600, 600),
        legends=[
            "\n".join(
                _x if _x is not None else "" 
                for _x in items
            ) for items in zip(*_ids.values())
        ],
    )


def log10_if_all_positive(df, col):
    if np.all(df[col] > 0.):
        df[col] = np.log10(df[col])
        title = f"log10[ {col} ]"
    else:
        title = col
    return title, df


def plot_x_vs_y(
    df,
    x: str,
    y: str,
    color: Optional[str] = None,
):  
    message = f"Plotting x={x}, y={y}, color={color}..."
    gr.Info(message, duration=10)
    print_err(df.head())
    y_title = y
    cols = ["id", "inchikey", "smiles", "mwt", "clogp", x, y]
    if color is not None and color not in cols:
        cols.append(color)
    cols = list(set(cols))
    x_title, df = log10_if_all_positive(df, x)
    y_title, df = log10_if_all_positive(df, y)
    color_title, df = log10_if_all_positive(df, color)

    return gr.ScatterPlot(
        value=df[cols],
        x=x,
        y=y,
        color=color,
        x_title=x_title,
        y_title=y_title,
        color_title=color_title,
        tooltip="all",
        visible=True,
    )


def plot_pred_vs_observed(
    df,
    species: str,
    observed: str,
    color: Optional[str] = None,
):  
    print_err(df.head())
    xcol = f"{species}: predicted MIC (µM)"
    ycol = observed
    return plot_x_vs_y(
        df,
        x=xcol,
        y=ycol,
        color=color,
    ) 


def download_table(
    df: pd.DataFrame
) -> str:
    df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
    filename = os.path.join(CACHE, "downloads", f"predicted-{df_hash}.csv")
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    df.to_csv(filename, index=False)
    return gr.DownloadButton(value=filename, visible=True)


def _predict_then_draw_then_download(
    strings: str,
    input_representation: str = 'smiles', 
    predict: Union[Iterable[str], str] = 'smiles', 
    extra_metrics: Optional[Union[Iterable[str], str]] = None,
    smiles_col: str = "smiles",
    legends: Optional[Union[str, Iterable[str]]] = None
):
    df, gr_df = predict_one(
        strings=strings,
        input_representation=input_representation, 
        predict=predict, 
        extra_metrics=extra_metrics,
        return_pd=True,
    )
    img = draw_one(
        df,
        smiles_col="smiles",
    )
    return gr_df, img, download_table(df)


def _load_then_predict_then_download_then_reveal_plot(
    file: str,
    column: str = 'smiles',
    input_representation: str = 'smiles',
    predict: str = 'smiles', 
    predict2: Optional[str] = "", 
    extra_metrics: Optional[Union[Iterable[str], str]] = None
):
    (df, df_gr), col_opts = load_input_data(
        file, 
        return_pd=True,
    )
    (df, df_gr), plot_opts = predict_file(
        df,
        column=column,
        input_representation=input_representation,
        predict=predict,
        predict2=None if predict2 == "" else predict2,
        extra_metrics=extra_metrics,
        return_pd=True,
    )
    print_err(df.head())
    return (
        df_gr, 
        download_table(df),
    ) + plot_opts


def _initial_setup():

    """Set up blocks.

    """
    print_err(f"Duvida config is {config}")
    print_err(f"Default torch device is {DEVICE}")

    line_inputs = {
        "format": gr.Dropdown(
            label="Input string format",
            choices=list(_FROM_FUNCTIONS),
            value="smiles",
            interactive=True,
        ),
        "species": gr.CheckboxGroup(
            label="Species for prediction",
            choices=list(MODEL_REPOS),
            value=list(MODEL_REPOS)[:1],
            interactive=True,
        ),
        "extras": gr.CheckboxGroup(
            label="Extra metrics (Doubtscore & Information Sensitivity can increase calculation time to a couple of minutes!)",
            choices=list(EXTRA_METRICS),
            value=list(EXTRA_METRICS)[:2],
            interactive=True,
        ),
        "strings": gr.Textbox(
            label="Input",
            placeholder="Paste your molecule here, one per line.",
            lines=2,
            interactive=True,
            submit_btn=True,
        ),
    }
    output_line = gr.DataFrame(
        label="Predictions (scroll left and right)",
        interactive=False,
        visible=True,
    )
    download_single = gr.DownloadButton(
        label="Download predictions",
        visible=True,
    )
    drawing = gr.Image(label="Chemical structures")

    file_inputs = {
        "file": gr.File(
            label="Upload a table of chemical compounds here",
            file_types=[".xlsx", ".csv", ".tsv", ".txt"],
        ),
        "column": gr.Dropdown(
            label="Input column name",
            choices=[],
            allow_custom_value=True,
            visible=True,
            interactive=True,
        ),
        "format": gr.Dropdown(
            label="Input string format",
            choices=list(_FROM_FUNCTIONS),
            value="smiles",
            interactive=True,
            visible=True,
        ),
        "species": [
            gr.Dropdown(
                label="Species 1 for prediction",
                choices=list(MODEL_REPOS),
                value=list(MODEL_REPOS)[0],
                interactive=True,
                allow_custom_value=True,
            ),
            gr.Dropdown(
                label="Species 2 for prediction",
                choices=list(MODEL_REPOS),
                value=None,
                interactive=True,
                allow_custom_value=True,
            ),
        ],
        "extras": gr.CheckboxGroup(
            label="Extra metrics (Information Sensitivity can increase calculation time)",
            choices=list(EXTRA_METRICS),
            value=list(EXTRA_METRICS)[:2],
            interactive=True,
        ),
    }

    input_dataframe = gr.Dataframe(
        label="Input data",
        max_height=500,
        visible=True,
        interactive=False,
        show_fullscreen_button=True,
        show_search="filter",
        max_chars=45,
    )
    download = gr.DownloadButton(
        label="Download predictions",
        visible=False,
    )
    plot_button = gr.Button(
        value="Plot!",
        visible=False,
    )

    left_plot_inputs = {
        "observed": gr.Dropdown(
            label="Observed column (y-axis) for left plot",
            choices=[],
            value=None,
            interactive=True,
            visible=True,
            allow_custom_value=True,
        ),
        "color": gr.Dropdown(
            label="Color for left plot",
            choices=[],
            value=None,
            interactive=True,
            visible=True,
            allow_custom_value=True,
        )
    }

    right_plot_inputs = {
        "x": gr.Dropdown(
            label="x-axis for right plot",
            choices=[],
            value=None,
            interactive=True,
            visible=True,
            allow_custom_value=True,
        ),
        "y": gr.Dropdown(
            label="y-axis for right plot",
            choices=[],
            value=None,
            interactive=True,
            visible=True,
            allow_custom_value=True,
        ),
        "color": gr.Dropdown(
            label="Color for right plot",
            choices=[],
            value=None,
            interactive=True,
            visible=True,
            allow_custom_value=True,
        )
    }
    plots = {
        "left": gr.ScatterPlot(
            height=500,
            visible=False,
        ),
        "right": gr.ScatterPlot(
            height=500,
            visible=False,
        ),
    }

    return (
        line_inputs, 
        output_line, 
        download_single,
        drawing,
        file_inputs, 
        input_dataframe, 
        download,
        plot_button,
        left_plot_inputs, 
        right_plot_inputs, 
        plots,
    )

if __name__ == "__main__":
    (
        line_inputs, 
        output_line, 
        download_single,
        drawing,
        file_inputs, 
        input_dataframe, 
        download,
        plot_button,
        left_plot_inputs, 
        right_plot_inputs, 
        plots,
    ) = _initial_setup()
    with gr.Blocks(theme=THEME) as demo:
        with open(HEADER_FILE, 'r') as f:
            header_md = f.read()
        gr.Markdown(header_md)

        with gr.Tab(label="Paste one per line"):
            examples = gr.Examples(
                examples=[
                    [
                        "\n".join(eg["strings"]), 
                        "smiles", 
                        eg["species"], 
                        list(EXTRA_METRICS)[:3],
                    ] 
                    for eg in EXAMPLES["line input examples"]
                ],
                example_labels=[
                    eg["label"] for eg in EXAMPLES["line input examples"]
                ],
                examples_per_page=100,
                inputs=[
                    line_inputs["strings"], 
                    line_inputs["format"], 
                    line_inputs["species"],
                    line_inputs["extras"],
                ],
                fn=_predict_then_draw_then_download,
                outputs=[
                    output_line,
                    drawing,
                    download_single,
                ],
                cache_examples=True,
                cache_mode="eager",
            )

            for val in line_inputs.values():
                val.render()
            # with gr.Row():
            output_line.render()
            download_single.render()
            drawing.render()
            line_inputs["strings"].submit(
                fn=_predict_then_draw_then_download,
                inputs=[
                    line_inputs["strings"], 
                    line_inputs["format"], 
                    line_inputs["species"],
                    line_inputs["extras"],
                ],
                outputs=[
                    output_line,
                    drawing,
                    download_single,
                ],
            )
        with gr.Tab(f"Predict on structures from a file (max. {MAX_ROWS} rows, ≤ 2 species)"):
            plot_dropdowns = list(itertools.chain(
                left_plot_inputs.values(),
                right_plot_inputs.values(), 
            ))
            file_examples = gr.Examples(
                examples=[
                    [
                        eg["file"],
                        eg["column"], 
                        "smiles",
                        eg["species"],
                        "",
                        list(EXTRA_METRICS)[:3],
                    ] for eg in EXAMPLES["file examples"]
                ],
                example_labels=[
                    eg["label"] for eg in EXAMPLES["file examples"]
                ],
                fn=_load_then_predict_then_download_then_reveal_plot,
                inputs=[
                    file_inputs["file"],
                    file_inputs["column"], 
                    file_inputs["format"], 
                    *file_inputs["species"],
                    file_inputs["extras"],
                ],
                outputs=[
                    input_dataframe,
                    download,
                    *plot_dropdowns,
                ],
                cache_examples=True,  ## appears to cause CSV load error
                cache_mode="eager",
            )
            file_inputs["file"].render()
            with gr.Row():
                for key in ("column", "format"):
                    file_inputs[key].render()
            with gr.Row():
                for item in file_inputs["species"]:
                    item.render()
            file_inputs["extras"].render()
            
            go_button2 = gr.Button(value="Predict!")

            input_dataframe.render()
            download.render()
            with gr.Row():
                for val in left_plot_inputs.values():
                    val.render()
            with gr.Row():
                for val in right_plot_inputs.values():
                    val.render()
            plot_button.render()

            with gr.Row():
                for val in plots.values():
                    val.render()
            
            file_inputs["file"].upload(
                fn=load_input_data,
                inputs=file_inputs["file"],
                outputs=[
                    input_dataframe, 
                    file_inputs["column"],
                ],
            )
            go2_click_event = go_button2.click(
                _load_then_predict_then_download_then_reveal_plot,
                inputs=[
                    file_inputs["file"],
                    file_inputs["column"], 
                    file_inputs["format"], 
                    *file_inputs["species"],
                    file_inputs["extras"],
                ],
                outputs=[
                    input_dataframe,
                    download,
                    *plot_dropdowns,
                ],
                scroll_to_output=True,
            ).then(
                lambda: gr.Button(visible=True),
                outputs=[plot_button],
                js=True,
            )

            file_examples.load_input_event.then(
                lambda: gr.Button(visible=True),
                outputs=[plot_button],
                js=True,
            )

            plot_button.click(
                plot_pred_vs_observed,
                inputs=[
                    input_dataframe,
                    file_inputs["species"][0],
                    left_plot_inputs["observed"],
                    left_plot_inputs["color"],
                ],
                outputs=[plots["left"]],
                scroll_to_output=True,
            ).then(
                plot_x_vs_y,
                inputs=[
                    input_dataframe,
                    right_plot_inputs["x"],
                    right_plot_inputs["y"],
                    right_plot_inputs["color"],
                ],
                outputs=[plots["right"]],
            )
    demo.queue()
    demo.launch(share=True)