Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from collections import OrderedDict | |
from functools import partial | |
import torch | |
from einops import rearrange, repeat | |
from scepter.modules.model.base_model import BaseModel | |
from scepter.modules.model.registry import BACKBONES | |
from scepter.modules.utils.config import dict_to_yaml | |
from scepter.modules.utils.distribute import we | |
from scepter.modules.utils.file_system import FS | |
from torch import Tensor, nn | |
from torch.utils.checkpoint import checkpoint_sequential | |
from .layers import (DoubleStreamBlock, EmbedND, LastLayer, | |
MLPEmbedder, SingleStreamBlock, | |
timestep_embedding) | |
class Flux(BaseModel): | |
""" | |
Transformer backbone Diffusion model with RoPE. | |
""" | |
para_dict = { | |
"IN_CHANNELS": { | |
"value": 64, | |
"description": "model's input channels." | |
}, | |
"OUT_CHANNELS": { | |
"value": 64, | |
"description": "model's output channels." | |
}, | |
"HIDDEN_SIZE": { | |
"value": 1024, | |
"description": "model's hidden size." | |
}, | |
"NUM_HEADS": { | |
"value": 16, | |
"description": "number of heads in the transformer." | |
}, | |
"AXES_DIM": { | |
"value": [16, 56, 56], | |
"description": "dimensions of the axes of the positional encoding." | |
}, | |
"THETA": { | |
"value": 10_000, | |
"description": "theta for positional encoding." | |
}, | |
"VEC_IN_DIM": { | |
"value": 768, | |
"description": "dimension of the vector input." | |
}, | |
"GUIDANCE_EMBED": { | |
"value": False, | |
"description": "whether to use guidance embedding." | |
}, | |
"CONTEXT_IN_DIM": { | |
"value": 4096, | |
"description": "dimension of the context input." | |
}, | |
"MLP_RATIO": { | |
"value": 4.0, | |
"description": "ratio of mlp hidden size to hidden size." | |
}, | |
"QKV_BIAS": { | |
"value": True, | |
"description": "whether to use bias in qkv projection." | |
}, | |
"DEPTH": { | |
"value": 19, | |
"description": "number of transformer blocks." | |
}, | |
"DEPTH_SINGLE_BLOCKS": { | |
"value": 38, | |
"description": "number of transformer blocks in the single stream block." | |
}, | |
"USE_GRAD_CHECKPOINT": { | |
"value": False, | |
"description": "whether to use gradient checkpointing." | |
}, | |
"ATTN_BACKEND": { | |
"value": "pytorch", | |
"description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'." | |
} | |
} | |
def __init__( | |
self, | |
cfg, | |
logger = None | |
): | |
super().__init__(cfg, logger=logger) | |
self.in_channels = cfg.IN_CHANNELS | |
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels) | |
hidden_size = cfg.get("HIDDEN_SIZE", 1024) | |
num_heads = cfg.get("NUM_HEADS", 16) | |
axes_dim = cfg.AXES_DIM | |
theta = cfg.THETA | |
vec_in_dim = cfg.VEC_IN_DIM | |
self.guidance_embed = cfg.GUIDANCE_EMBED | |
context_in_dim = cfg.CONTEXT_IN_DIM | |
mlp_ratio = cfg.MLP_RATIO | |
qkv_bias = cfg.QKV_BIAS | |
depth = cfg.DEPTH | |
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS | |
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False) | |
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch") | |
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None) | |
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None) | |
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None) | |
if hidden_size % num_heads != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
) | |
pe_dim = hidden_size // num_heads | |
if sum(axes_dim) != pe_dim: | |
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity() | |
) | |
self.txt_in = nn.Linear(context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
backend=self.attn_backend | |
) | |
for _ in range(depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend) | |
for _ in range(depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def prepare_input(self, x, context, y, x_shape=None): | |
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360] | |
bs, c, h, w = x.shape | |
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
x_id = torch.zeros(h // 2, w // 2, 3) | |
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None] | |
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :] | |
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs) | |
txt_ids = torch.zeros(bs, context.shape[1], 3) | |
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w | |
def unpack(self, x: Tensor, height: int, width: int) -> Tensor: | |
return rearrange( | |
x, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=math.ceil(height/2), | |
w=math.ceil(width/2), | |
ph=2, | |
pw=2, | |
) | |
def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0): | |
key_map = { | |
"single_blocks.{}.linear1.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"] | |
], "num": 38}, | |
"single_blocks.{}.modulation.lin.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"], | |
], "num": 38}, | |
"single_blocks.{}.linear2.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"], | |
], "num": 38}, | |
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"], | |
], "num": 19}, | |
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"], | |
], "num": 19}, | |
"double_blocks.{}.img_attn.proj.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mlp.0.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mlp.2.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mod.lin.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight", | |
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight", | |
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"] | |
], "num": 19} | |
} | |
for k, v in key_map.items(): | |
key_list = v["key_list"] | |
block_num = v["num"] | |
for block_id in range(block_num): | |
current_weight_list = [] | |
for k_list in key_list: | |
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0), | |
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0) | |
current_weight_list.append(current_weight) | |
current_weight = torch.cat(current_weight_list, dim=0) | |
ori_sd[k.format(block_id)] += scale*current_weight | |
return ori_sd | |
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0): | |
have_lora_keys = {} | |
for k, v in lora_sd.items(): | |
k = k[len("model."):] if k.startswith("model.") else k | |
ori_key = k.split("lora")[0] + "weight" | |
if ori_key not in ori_sd: | |
raise f"{ori_key} should in the original statedict" | |
if ori_key not in have_lora_keys: | |
have_lora_keys[ori_key] = {} | |
if "lora_A" in k: | |
have_lora_keys[ori_key]["lora_A"] = v | |
elif "lora_B" in k: | |
have_lora_keys[ori_key]["lora_B"] = v | |
else: | |
raise NotImplementedError | |
for key, v in have_lora_keys.items(): | |
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0) | |
ori_sd[key] += scale * current_weight | |
return ori_sd | |
def load_pretrained_model(self, pretrained_model): | |
if next(self.parameters()).device.type == 'meta': | |
map_location = we.device_id | |
else: | |
map_location = "cpu" | |
if self.lora_model is not None: | |
map_location = we.device_id | |
if pretrained_model is not None: | |
with FS.get_from(pretrained_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
sd = load_safetensors(local_model, device=map_location) | |
else: | |
sd = torch.load(local_model, map_location=map_location) | |
if "state_dict" in sd: | |
sd = sd["state_dict"] | |
if "model" in sd: | |
sd = sd["model"]["model"] | |
if self.lora_model is not None: | |
with FS.get_from(self.lora_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
lora_sd = load_safetensors(local_model, device=map_location) | |
else: | |
lora_sd = torch.load(local_model, map_location=map_location) | |
sd = self.merge_diffuser_lora(sd, lora_sd) | |
if self.swift_lora_model is not None: | |
with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
lora_sd = load_safetensors(local_model, device=map_location) | |
else: | |
lora_sd = torch.load(local_model, map_location=map_location) | |
sd = self.merge_swift_lora(sd, lora_sd) | |
adapter_ckpt = {} | |
if self.pretrain_adapter is not None: | |
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
adapter_ckpt = load_safetensors(local_adapter, device=map_location) | |
else: | |
adapter_ckpt = torch.load(local_adapter, map_location=map_location) | |
sd.update(adapter_ckpt) | |
new_ckpt = OrderedDict() | |
for k, v in sd.items(): | |
if k in ("img_in.weight"): | |
model_p = self.state_dict()[k] | |
if v.shape != model_p.shape: | |
model_p.zero_() | |
model_p[:, :64].copy_(v[:, :64]) | |
new_ckpt[k] = torch.nn.parameter.Parameter(model_p) | |
else: | |
new_ckpt[k] = v | |
else: | |
new_ckpt[k] = v | |
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True) | |
self.logger.info( | |
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys' | |
) | |
if len(missing) > 0: | |
self.logger.info(f'Missing Keys:\n {missing}') | |
if len(unexpected) > 0: | |
self.logger.info(f'\nUnexpected Keys:\n {unexpected}') | |
def forward( | |
self, | |
x: Tensor, | |
t: Tensor, | |
cond: dict = {}, | |
guidance: Tensor | None = None, | |
gc_seg: int = 0 | |
) -> Tensor: | |
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"]) | |
# running on sequences img | |
x = self.img_in(x) | |
vec = self.time_in(timestep_embedding(t, 256)) | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, x_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
txt_length=txt.shape[1], | |
) | |
x = torch.cat((txt, x), 1) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.double_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.double_blocks: | |
x = block(x, **kwargs) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.single_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.single_blocks: | |
x = block(x, **kwargs) | |
x = x[:, txt.shape[1] :, ...] | |
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
x = self.unpack(x, h, w) | |
return x | |
def get_config_template(): | |
return dict_to_yaml('MODEL', | |
__class__.__name__, | |
Flux.para_dict, | |
set_name=True) |