|
_base_ = [ |
|
'./datasets/hsi_detection4x.py', './_base_/default_runtime.py' |
|
] |
|
|
|
|
|
in_channels = 30 |
|
|
|
model = dict( |
|
type='DINO', |
|
num_queries=900, |
|
with_box_refine=True, |
|
as_two_stage=True, |
|
data_preprocessor=dict( |
|
type='HSIDetDataPreprocessor', |
|
pad_size_divisor=1), |
|
backbone=dict( |
|
type='ResNet', |
|
in_channels=in_channels, |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(1, 2, 3), |
|
frozen_stages=-1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50') |
|
), |
|
neck=dict( |
|
type='ChannelMapper', |
|
in_channels=[512, 1024, 2048], |
|
kernel_size=1, |
|
out_channels=256, |
|
act_cfg=None, |
|
norm_cfg=dict(type='GN', num_groups=32), |
|
num_outs=4), |
|
encoder=dict( |
|
num_layers=6, |
|
layer_cfg=dict( |
|
self_attn_cfg=dict(embed_dims=256, num_levels=4, |
|
dropout=0.0), |
|
ffn_cfg=dict( |
|
embed_dims=256, |
|
feedforward_channels=2048, |
|
ffn_drop=0.0))), |
|
decoder=dict( |
|
num_layers=6, |
|
return_intermediate=True, |
|
layer_cfg=dict( |
|
self_attn_cfg=dict(embed_dims=256, num_heads=8, |
|
dropout=0.0), |
|
cross_attn_cfg=dict(embed_dims=256, num_levels=4, |
|
dropout=0.0), |
|
ffn_cfg=dict( |
|
embed_dims=256, |
|
feedforward_channels=2048, |
|
ffn_drop=0.0)), |
|
post_norm_cfg=None), |
|
positional_encoding=dict( |
|
num_feats=128, |
|
normalize=True, |
|
offset=0.0, |
|
temperature=20), |
|
bbox_head=dict( |
|
type='DINOHead', |
|
num_classes=8, |
|
sync_cls_avg_factor=True, |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), |
|
dn_cfg=dict( |
|
label_noise_scale=0.5, |
|
box_noise_scale=1.0, |
|
group_cfg=dict(dynamic=True, num_groups=None, |
|
num_dn_queries=100)), |
|
|
|
train_cfg=dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
match_costs=[ |
|
dict(type='FocalLossCost', weight=2.0), |
|
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
dict(type='IoUCost', iou_mode='giou', weight=2.0) |
|
])), |
|
test_cfg=dict(max_per_img=300)) |
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict( |
|
type='AdamW', |
|
lr=0.0001, |
|
weight_decay=0.0001), |
|
clip_grad=dict(max_norm=0.1, norm_type=2), |
|
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1)}) |
|
) |
|
|
|
|
|
max_epochs = 12 |
|
train_cfg = dict( |
|
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=12) |
|
|
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
|
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=max_epochs, |
|
by_epoch=True, |
|
milestones=[11], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
|
|
train_dataloader = dict( |
|
batch_size=4,) |
|
test_dataloader = dict( |
|
batch_size=1,) |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=4) |