Scholar-Sage / app.py
sadiaislam31's picture
Update app.py
861c286 verified
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a college chatbot specialized in providing information on college,scholarships, and mentors."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
try:
user_message = f"Here's what I found about scholarships: {relevant_segment}"
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages,
max_tokens=500, # can try increasing this if responses are cut off
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "This is ScholarSage! Ask me anything about college or scholarships!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Sorry, that's not a spell I know of D: I couldn't find the information! Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🪄 Welcome to ScholarSage! 🧙‍♀️
## An AI-driven wizard for all college-related queries! Created by Sadia, Jinny, and Kristy of the 2024 Kode With Klossy NYC Camp.
"""
topics = """
### Feel Free to ask me anything from the topics below! Reminder that I can only summon info about NY colleges and CS majors. Sorry!
- College
- Scholarships
"""
subtopics = """
### Focus questions on these subtopics:
- List of Colleges in NYS
1. best colleges for CS
2. private
3. public
4. ivy leagues
- List of Scholarships
1. low income student friendly
2. specific to a certain college
3. national scholarships
"""
def display_image():
return "https://huggingface.co/spaces/scholar-sage/Scholar-Sage/resolve/main/Screenshot%202024-08-01%20at%203.04.19%E2%80%AFPM.png"
theme = gr.themes.Soft(
primary_hue="amber",
secondary_hue="rose",
neutral_hue="rose",
).set(
body_text_color='*neutral_500',
background_fill_primary='*primary_50',
border_color_primary='*secondary_400',
block_background_fill='*background_fill_primary',
block_border_width='1px',
block_border_width_dark='1px',
block_label_background_fill='*background_fill_primary',
block_label_background_fill_dark='*background_fill_secondary',
block_label_text_color='*neutral_500',
block_label_text_color_dark='*neutral_200',
block_label_margin='0',
block_label_padding='*spacing_sm *spacing_lg',
block_label_radius='calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px) 0',
block_label_text_size='*text_sm',
block_label_text_weight='400',
block_title_background_fill='none',
block_title_background_fill_dark='none',
block_title_text_color='*neutral_500',
block_title_text_color_dark='*neutral_200',
block_title_padding='0',
block_title_radius='none',
block_title_text_weight='400',
panel_border_width='0',
panel_border_width_dark='0',
input_background_fill='*neutral_100',
input_border_color='*border_color_primary',
input_shadow='none',
input_shadow_dark='none',
input_shadow_focus='*input_shadow',
input_shadow_focus_dark='*input_shadow',
slider_color='#2563eb',
slider_color_dark='#2563eb',
button_shadow='none',
button_shadow_active='none',
button_shadow_hover='none',
button_primary_background_fill='*primary_200',
button_primary_background_fill_hover='*button_primary_background_fill',
button_primary_background_fill_hover_dark='*button_primary_background_fill',
button_primary_text_color='*primary_600',
button_secondary_background_fill='*neutral_200',
button_secondary_background_fill_hover='*button_secondary_background_fill',
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
button_secondary_text_color='*neutral_700',
button_cancel_background_fill_hover='*button_cancel_background_fill',
button_cancel_background_fill_hover_dark='*button_cancel_background_fill'
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image(display_image(), container = False, show_share_button = False, show_download_button = False, label="output", show_label=True, elem_id="output_image")
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
gr.Markdown(subtopics)
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="ScholarSage Response", placeholder="ScholarSage will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
demo.launch()
# Launch the Gradio app to allow user interaction
demo.launch(share=True)