Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
import openai | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Initialize paths and model identifiers for easy configuration and maintenance | |
filename = "output_topic_details.txt" # Path to the file storing chess-specific details | |
retrieval_model_name = 'output/sentence-transformer-finetuned/' | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
system_message = "You are a college chatbot specialized in providing information on college,scholarships, and mentors." | |
# Initial system message to set the behavior of the assistant | |
messages = [{"role": "system", "content": system_message}] | |
# Attempt to load the necessary models and provide feedback on success or failure | |
try: | |
retrieval_model = SentenceTransformer(retrieval_model_name) | |
print("Models loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load models: {e}") | |
def load_and_preprocess_text(filename): | |
""" | |
Load and preprocess text from a file, removing empty lines and stripping whitespace. | |
""" | |
try: | |
with open(filename, 'r', encoding='utf-8') as file: | |
segments = [line.strip() for line in file if line.strip()] | |
print("Text loaded and preprocessed successfully.") | |
return segments | |
except Exception as e: | |
print(f"Failed to load or preprocess text: {e}") | |
return [] | |
segments = load_and_preprocess_text(filename) | |
def find_relevant_segment(user_query, segments): | |
""" | |
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings. | |
This version finds the best match based on the content of the query. | |
""" | |
try: | |
# Lowercase the query for better matching | |
lower_query = user_query.lower() | |
# Encode the query and the segments | |
query_embedding = retrieval_model.encode(lower_query) | |
segment_embeddings = retrieval_model.encode(segments) | |
# Compute cosine similarities between the query and the segments | |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] | |
# Find the index of the most similar segment | |
best_idx = similarities.argmax() | |
# Return the most relevant segment | |
return segments[best_idx] | |
except Exception as e: | |
print(f"Error in finding relevant segment: {e}") | |
return "" | |
def generate_response(user_query, relevant_segment): | |
try: | |
user_message = f"Here's what I found about scholarships: {relevant_segment}" | |
messages.append({"role": "user", "content": user_message}) | |
response = openai.ChatCompletion.create( | |
model="gpt-4o", | |
messages=messages, | |
max_tokens=500, # can try increasing this if responses are cut off | |
temperature=0.5, | |
top_p=1, | |
frequency_penalty=0.5, | |
presence_penalty=0.5, | |
) | |
return response['choices'][0]['message']['content'].strip() | |
except Exception as e: | |
print(f"Error in generating response: {e}") | |
return f"Error in generating response: {e}" | |
def query_model(question): | |
""" | |
Process a question, find relevant information, and generate a response. | |
""" | |
if question == "": | |
return "This is ScholarSage! Ask me anything about college or scholarships!" | |
relevant_segment = find_relevant_segment(question, segments) | |
if not relevant_segment: | |
return "Sorry, that's not a spell I know of D: I couldn't find the information! Please refine your question." | |
response = generate_response(question, relevant_segment) | |
return response | |
# Define the welcome message and specific topics the chatbot can provide information about | |
welcome_message = """ | |
# 🪄 Welcome to ScholarSage! 🧙♀️ | |
## An AI-driven wizard for all college-related queries! Created by Sadia, Jinny, and Kristy of the 2024 Kode With Klossy NYC Camp. | |
""" | |
topics = """ | |
### Feel Free to ask me anything from the topics below! Reminder that I can only summon info about NY colleges and CS majors. Sorry! | |
- College | |
- Scholarships | |
""" | |
subtopics = """ | |
### Focus questions on these subtopics: | |
- List of Colleges in NYS | |
1. best colleges for CS | |
2. private | |
3. public | |
4. ivy leagues | |
- List of Scholarships | |
1. low income student friendly | |
2. specific to a certain college | |
3. national scholarships | |
""" | |
def display_image(): | |
return "https://huggingface.co/spaces/scholar-sage/Scholar-Sage/resolve/main/Screenshot%202024-08-01%20at%203.04.19%E2%80%AFPM.png" | |
theme = gr.themes.Soft( | |
primary_hue="amber", | |
secondary_hue="rose", | |
neutral_hue="rose", | |
).set( | |
body_text_color='*neutral_500', | |
background_fill_primary='*primary_50', | |
border_color_primary='*secondary_400', | |
block_background_fill='*background_fill_primary', | |
block_border_width='1px', | |
block_border_width_dark='1px', | |
block_label_background_fill='*background_fill_primary', | |
block_label_background_fill_dark='*background_fill_secondary', | |
block_label_text_color='*neutral_500', | |
block_label_text_color_dark='*neutral_200', | |
block_label_margin='0', | |
block_label_padding='*spacing_sm *spacing_lg', | |
block_label_radius='calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px) 0', | |
block_label_text_size='*text_sm', | |
block_label_text_weight='400', | |
block_title_background_fill='none', | |
block_title_background_fill_dark='none', | |
block_title_text_color='*neutral_500', | |
block_title_text_color_dark='*neutral_200', | |
block_title_padding='0', | |
block_title_radius='none', | |
block_title_text_weight='400', | |
panel_border_width='0', | |
panel_border_width_dark='0', | |
input_background_fill='*neutral_100', | |
input_border_color='*border_color_primary', | |
input_shadow='none', | |
input_shadow_dark='none', | |
input_shadow_focus='*input_shadow', | |
input_shadow_focus_dark='*input_shadow', | |
slider_color='#2563eb', | |
slider_color_dark='#2563eb', | |
button_shadow='none', | |
button_shadow_active='none', | |
button_shadow_hover='none', | |
button_primary_background_fill='*primary_200', | |
button_primary_background_fill_hover='*button_primary_background_fill', | |
button_primary_background_fill_hover_dark='*button_primary_background_fill', | |
button_primary_text_color='*primary_600', | |
button_secondary_background_fill='*neutral_200', | |
button_secondary_background_fill_hover='*button_secondary_background_fill', | |
button_secondary_background_fill_hover_dark='*button_secondary_background_fill', | |
button_secondary_text_color='*neutral_700', | |
button_cancel_background_fill_hover='*button_cancel_background_fill', | |
button_cancel_background_fill_hover_dark='*button_cancel_background_fill' | |
) | |
# Setup the Gradio Blocks interface with custom layout components | |
with gr.Blocks(theme=theme) as demo: | |
gr.Image(display_image(), container = False, show_share_button = False, show_download_button = False, label="output", show_label=True, elem_id="output_image") | |
gr.Markdown(welcome_message) # Display the formatted welcome message | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(topics) # Show the topics on the left side | |
gr.Markdown(subtopics) | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?") | |
answer = gr.Textbox(label="ScholarSage Response", placeholder="ScholarSage will respond here...", interactive=False, lines=10) | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=query_model, inputs=question, outputs=answer) | |
demo.launch() | |
# Launch the Gradio app to allow user interaction | |
demo.launch(share=True) | |