Spaces:
Running
Running
File size: 9,917 Bytes
10e9b7d 043cb3a 10e9b7d eccf8e4 3c4371f 4c42a76 808eedd 4c42a76 043cb3a 8dce943 e79359e 3db6293 e79359e 40f658d e79359e ef7e6c0 40f658d e79359e f35f3f0 e79359e 40f658d 043cb3a 29032bf 043cb3a 40f658d 043cb3a 40f658d 043cb3a 40f658d 043cb3a 40f658d 043cb3a 40f658d 043cb3a 40f658d 29032bf 043cb3a 40f658d 5bb8fe1 043cb3a 808eedd 043cb3a e80aab9 043cb3a 29032bf 043cb3a 29032bf 043cb3a 40f658d ef7e6c0 40f658d ef7e6c0 40f658d ef7e6c0 40f658d ef7e6c0 40f658d e79359e 4c42a76 808eedd 8dce943 043cb3a 29032bf 043cb3a 40f658d 043cb3a 40f658d 043cb3a ef7e6c0 40f658d 043cb3a 40f658d 043cb3a ef7e6c0 40f658d 4c42a76 e79359e 5bb8fe1 4c42a76 808eedd 4c42a76 5bb8fe1 4c42a76 808eedd 4c42a76 eccf8e4 808eedd 8dce943 4c42a76 5bb8fe1 808eedd 31243f4 808eedd e79359e 808eedd 5bb8fe1 4c42a76 808eedd 4c42a76 808eedd 4c42a76 5bb8fe1 e79359e 5bb8fe1 808eedd 7e4a06b 31243f4 808eedd e79359e 4c42a76 e80aab9 4c42a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import re
import gradio as gr
import requests
import pandas as pd
from huggingface_hub import InferenceClient
from duckduckgo_search import DDGS
import wikipediaapi
from bs4 import BeautifulSoup
import pdfplumber
# ==== CONFIG ====
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
HF_TOKEN = os.getenv("HF_TOKEN")
# Your list of SOTA chat models, in order of preference
CONVERSATIONAL_MODELS = [
"deepseek-ai/DeepSeek-V2-Chat",
"Qwen/Qwen2-72B-Instruct",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"meta-llama/Meta-Llama-3-70B-Instruct",
"deepseek-ai/DeepSeek-Coder-33B-Instruct"
]
wiki_api = wikipediaapi.Wikipedia(language="en", user_agent="SmartAgent/1.0 ([email protected])")
# ==== UTILITY: Link/file detection ====
def extract_links(text):
url_pattern = re.compile(r'(https?://[^\s\)\],]+)')
return url_pattern.findall(text or "")
def download_file(url, out_dir="tmp_files"):
os.makedirs(out_dir, exist_ok=True)
filename = url.split("/")[-1].split("?")[0]
local_path = os.path.join(out_dir, filename)
try:
r = requests.get(url, timeout=20)
r.raise_for_status()
with open(local_path, "wb") as f:
f.write(r.content)
return local_path
except Exception:
return None
# ==== File/Link Analyzers ====
def analyze_file(file_path):
if file_path.endswith((".xlsx", ".xls")):
try:
df = pd.read_excel(file_path)
return f"Excel summary: {df.head().to_markdown(index=False)}"
except Exception as e:
return f"Excel error: {e}"
elif file_path.endswith(".csv"):
try:
df = pd.read_csv(file_path)
return f"CSV summary: {df.head().to_markdown(index=False)}"
except Exception as e:
return f"CSV error: {e}"
elif file_path.endswith(".pdf"):
try:
with pdfplumber.open(file_path) as pdf:
first_page = pdf.pages[0].extract_text()
return f"PDF text sample: {first_page[:1000]}"
except Exception as e:
return f"PDF error: {e}"
elif file_path.endswith(".txt"):
try:
with open(file_path, encoding='utf-8') as f:
txt = f.read()
return f"TXT file sample: {txt[:1000]}"
except Exception as e:
return f"TXT error: {e}"
else:
return f"Unsupported file type: {file_path}"
def analyze_webpage(url):
try:
r = requests.get(url, timeout=15)
soup = BeautifulSoup(r.text, "lxml")
title = soup.title.string if soup.title else "No title"
paragraphs = [p.get_text() for p in soup.find_all("p")]
article_sample = "\n".join(paragraphs[:5])
return f"Webpage Title: {title}\nContent sample:\n{article_sample[:1200]}"
except Exception as e:
return f"Webpage error: {e}"
# ==== SEARCH TOOLS ====
def duckduckgo_search(query):
try:
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
bodies = [r.get("body", "") for r in results if r.get("body")]
return "\n".join(bodies) if bodies else None
except Exception:
return None
def wikipedia_search(query):
try:
page = wiki_api.page(query)
if page.exists() and page.summary:
return page.summary
except Exception:
return None
return None
def is_coding_question(text):
code_terms = [
"python", "java", "c++", "code", "function", "write a", "script", "algorithm",
"bug", "traceback", "error", "output", "compile", "debug"
]
if any(term in (text or "").lower() for term in code_terms):
return True
if re.search(r"```.+```", text or "", re.DOTALL):
return True
return False
def llm_conversational(question):
last_error = None
for model_id in CONVERSATIONAL_MODELS:
try:
hf_client = InferenceClient(model_id, token=HF_TOKEN)
result = hf_client.conversational(
messages=[{"role": "user", "content": question}],
max_new_tokens=512,
)
# Extract generated_text
if isinstance(result, dict) and "generated_text" in result:
return f"[{model_id}] " + result["generated_text"]
elif hasattr(result, "generated_text"):
return f"[{model_id}] " + result.generated_text
elif isinstance(result, str):
return f"[{model_id}] " + result
except Exception as e:
last_error = f"{model_id}: {e}"
return f"LLM Error (all advanced models): {last_error}"
# ==== SMART AGENT ====
class SmartAgent:
def __init__(self):
pass
def __call__(self, question: str) -> str:
# 1. Handle file/link
links = extract_links(question)
if links:
results = []
for url in links:
if re.search(r"\.xlsx|\.xls|\.csv|\.pdf|\.txt", url):
local = download_file(url)
if local:
file_analysis = analyze_file(local)
results.append(f"File ({url}):\n{file_analysis}")
else:
results.append(f"Could not download file: {url}")
else:
results.append(analyze_webpage(url))
if results:
return "\n\n".join(results)
# 2. Coding/algorithmic questions: Prefer DeepSeek-Coder-33B
if is_coding_question(question):
coder_client = InferenceClient("deepseek-ai/DeepSeek-Coder-33B-Instruct", token=HF_TOKEN)
try:
coder_result = coder_client.conversational(
messages=[{"role": "user", "content": question}],
max_new_tokens=512,
)
if isinstance(coder_result, dict) and "generated_text" in coder_result:
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result["generated_text"]
elif hasattr(coder_result, "generated_text"):
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result.generated_text
elif isinstance(coder_result, str):
return "[deepseek-ai/DeepSeek-Coder-33B-Instruct] " + coder_result
except Exception as e:
# fallback to other chat models
pass
# 3. DuckDuckGo for current/web knowledge
result = duckduckgo_search(question)
if result:
return result
# 4. Wikipedia for encyclopedic queries
result = wikipedia_search(question)
if result:
return result
# 5. Fallback to conversational LLMs
result = llm_conversational(question)
if result:
return result
return "No answer could be found by available tools."
# ==== SUBMISSION LOGIC ====
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent = SmartAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# ==== GRADIO UI ====
with gr.Blocks() as demo:
gr.Markdown("# Smart Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, define your agent logic, tools, packages, etc.
2. Log in to Hugging Face.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)
|