File size: 12,877 Bytes
ee63c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a0e7fd
ee63c25
 
 
 
 
0a0e7fd
ee63c25
0a0e7fd
 
 
 
 
 
ee63c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a0e7fd
ee63c25
 
 
0a0e7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee63c25
0a0e7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
ee63c25
 
 
0a0e7fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import annotations
import os
import random
import uuid
import gradio as gr
import spaces
import numpy as np
from diffusers import PixArtAlphaPipeline, LCMScheduler
import torch
from typing import Tuple
from datetime import datetime

# Description for the app
DESCRIPTION = """ 
# Instant Image
### Super fast text to Image Generator.
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
### First Image processing takes time then images generate faster.
### Must Try -> Instant Video https://huggingface.co/spaces/KingNish/Instant-Video
"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

# Configuration and constants
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Define color-based attributes
color_attributes = {
    "Purple": {"verbs": ["assist", "befriend", "care", "collaborate", "connect", "embrace", "empower", "encourage", "foster", "give", "help", "nourish", "nurture", "promote", "protect", "provide", "serve", "share", "shepherd", "steward", "tend", "uplift", "value", "welcome"], "adjectives": ["caring", "encouraging", "attentive", "compassionate", "empathetic", "generous", "hospitable", "nurturing", "protective", "selfless", "supportive", "welcoming"]},
    "Green": {"verbs": ["analyze", "discover", "examine", "expand", "explore", "extend", "inquire", "journey", "launch", "move", "pioneer", "pursue", "question", "reach", "search", "uncover", "venture", "wonder"], "adjectives": ["adventurous", "curious", "discerning", "examining", "experiential", "exploratory", "inquisitive", "investigative", "intrepid", "philosophical"]},
    "Maroon": {"verbs": ["accomplish", "achieve", "build", "challenge", "commit", "compete", "contend", "dedicate", "defend", "devote", "drive", "endeavor", "entrust", "endure", "fight", "grapple", "grow", "improve", "increase", "overcome", "persevere", "persist", "press on", "pursue", "resolve"], "adjectives": ["competitive", "determined", "gritty", "industrious", "persevering", "relentless", "resilient", "tenacious", "tough", "unwavering"]},
    "Orange": {"verbs": ["compose", "conceptualize", "conceive", "craft", "create", "design", "dream", "envision", "express", "fashion", "form", "imagine", "interpret", "make", "originate", "paint", "perform", "portray", "realize", "shape"], "adjectives": ["artistic", "conceptual", "creative", "eclectic", "expressive", "imaginative", "interpretive", "novel", "original", "whimsical"]},
    "Yellow": {"verbs": ["accelerate", "advance", "change", "conceive", "create", "engineer", "envision", "experiment", "dream", "ignite", "illuminate", "imagine", "innovate", "inspire", "invent", "pioneer", "progress", "shape", "spark", "solve", "transform", "unleash", "unlock"], "adjectives": ["advanced", "analytical", "brilliant", "experimental", "forward-thinking", "innovative", "intelligent", "inventive", "leading-edge", "visionary"]},
    "Red": {"verbs": ["animate", "amuse", "captivate", "cheer", "delight", "encourage", "energize", "engage", "enjoy", "enliven", "entertain", "excite", "express", "inspire", "joke", "motivate", "play", "stir", "uplift"], "adjectives": ["dynamic", "energetic", "engaging", "entertaining", "enthusiastic", "exciting", "fun", "lively", "magnetic", "playful", "humorous"]},
    "Blue": {"verbs": ["accomplish", "achieve", "affect", "assert", "cause", "command", "determine", "direct", "dominate", "drive", "empower", "establish", "guide", "impact", "impress", "influence", "inspire", "lead", "outpace", "outshine", "realize", "shape", "succeed", "transform", "win"], "adjectives": ["accomplished", "assertive", "confident", "decisive", "elite", "influential", "powerful", "prominent", "proven", "strong"]},
    "Pink": {"verbs": ["arise", "aspire", "detail", "dream", "elevate", "enchant", "enrich", "envision", "exceed", "excel", "experience", "improve", "idealize", "imagine", "inspire", "perfect", "poise", "polish", "prepare", "refine", "uplift"], "adjectives": ["aesthetic", "charming", "classic", "dignified", "idealistic", "meticulous", "poised", "polished", "refined", "sophisticated", "elegant"]},
    "Silver": {"verbs": ["activate", "campaign", "challenge", "commit", "confront", "dare", "defy", "disrupt", "drive", "excite", "face", "ignite", "incite", "influence", "inspire", "inspirit", "motivate", "move", "push", "rebel", "reimagine", "revolutionize", "rise", "spark", "stir", "fight", "free"], "adjectives": ["bold", "daring", "fearless", "independent", "non-conformist", "radical", "rebellious", "resolute", "unconventional", "valiant"]},
    "Beige": {"verbs": ["dedicate", "humble", "collaborate", "empower", "inspire", "empassion", "transform"], "adjectives": ["dedicated", "collaborative", "consistent", "empowering", "enterprising", "humble", "inspiring", "passionate", "proud", "traditional", "transformative"]},
}

# Image styles for Gradio interface
style_list = [
    {"name": "(No style)", "prompt": "{prompt}", "negative_prompt": ""},
    {"name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"},
    {"name": "Realistic", "prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured"},
    {"name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast"},
    {"name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly"},
    {"name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"},
    {"name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"},
    {"name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting"},
]

# Create dictionary of styles
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
NUM_IMAGES_PER_PROMPT = 1

# Function to apply style and modify prompt based on selected colors
def apply_style(style_name: str, positive: str, color_selections: dict) -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    color_prompt = ""
    
    # Aggregate verbs and adjectives from selected colors based on their ratios
    for color, attributes in color_selections.items():
        if attributes["selected"]:
            verbs = random.sample(color_attributes[color]["verbs"], min(3, len(color_attributes[color]["verbs"])))
            adjectives = random.sample(color_attributes[color]["adjectives"], min(3, len(color_attributes[color]["adjectives"])))
            color_prompt += " ".join(verbs) + " " + " ".join(adjectives) + " "
    
    # Form the final prompt
    final_prompt = p.replace("{prompt}", positive + " " + color_prompt.strip())
    return final_prompt, n

# Check if CUDA is available and set up the pipeline
if torch.cuda.is_available():
    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    if os.getenv('CONSISTENCY_DECODER', False):
        print("Using DALL-E 3 Consistency Decoder")
        pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")
    if USE_TORCH_COMPILE:
        pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

# Function to save image
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# Function to randomize seed if needed
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# Main function to generate images based on user inputs
@spaces.GPU(duration=30)
def generate(
    prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    inference_steps: int = 4,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    **kwargs
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None
    
    color_selections = {
        color: {
            "selected": kwargs.get(f"{color.lower()}_selected", False),
            "ratio": kwargs.get(f"{color.lower()}_ratio", 0)
        } for color in color_attributes
    }
    
    prompt, negative_prompt = apply_style(style, prompt, color_selections)
    
    try:
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=0,
            num_inference_steps=inference_steps,
            generator=generator,
            num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
            use_resolution_binning=use_resolution_binning,
            output_type="pil",
        ).images
    except Exception as e:
        print(f"Error during image generation: {e}")
        return [], seed
    
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

# Example setup for Gradio interface

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            prompt = gr.Text(label="Prompt", placeholder="Enter your prompt")
            negative_prompt = gr.Text(label="Negative Prompt", placeholder="Enter a negative prompt")
            style_selection = gr.Radio(choices=STYLE_NAMES, label="Style")
            use_negative_prompt = gr.Checkbox(label="Use Negative Prompt")
            seed = gr.Number(label="Seed", value=0)
            width = gr.Number(label="Width", value=1024)
            height = gr.Number(label="Height", value=1024)
            inference_steps = gr.Slider(minimum=4, maximum=20, label="Inference Steps", value=4)
            randomize_seed = gr.Checkbox(label="Randomize Seed")
            with gr.Accordion("Color Influences"):
                for color in color_attributes:
                    with gr.Row():
                        color_checkboxes[color] = gr.Checkbox(label=f"{color} Selected", value=False)
                        color_sliders[color] = gr.Slider(label=f"{color} Ratio", minimum=0, maximum=1, step=0.01, value=0.1)

    run_button = gr.Button("Generate")
    result = gr.Gallery()

    run_button.click(
        fn=generate,
        inputs={
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "style": style_selection,
            "use_negative_prompt": use_negative_prompt,
            "seed": seed,
            "width": width,
            "height": height,
            "inference_steps": inference_steps,
            "randomize_seed": randomize_seed,
            **{f"{color.lower()}_selected": color_checkboxes[color] for color in color_attributes},
            **{f"{color.lower()}_ratio": color_sliders[color] for color in color_attributes}
        },
        outputs=result
    )

if __name__ == "__main__":
    demo.launch()