voicechat / app.py
scooter7's picture
Update app.py
00f15f8 verified
import asyncio
import base64
import json
import os
import pathlib
from typing import AsyncGenerator, Literal, List
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import AsyncStreamHandler, Stream, wait_for_item
from pydantic import BaseModel
import uvicorn
# --- Import get_space (optional) ---
from gradio.utils import get_space
# --- Document processing and RAG libraries ---
import PyPDF2
import docx
import faiss
from sentence_transformers import SentenceTransformer
from transformers import pipeline
# --- Speech processing libraries ---
import whisper
from gtts import gTTS
from pydub import AudioSegment
import io
# Load environment variables and define current directory
load_dotenv()
current_dir = pathlib.Path(__file__).parent
# ====================================================
# 1. Document Ingestion & RAG Pipeline Setup
# ====================================================
DOCS_FOLDER = current_dir / "docs"
def extract_text_from_pdf(file_path: pathlib.Path) -> str:
text = ""
with open(file_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def extract_text_from_docx(file_path: pathlib.Path) -> str:
doc = docx.Document(file_path)
return "\n".join([para.text for para in doc.paragraphs])
def extract_text_from_txt(file_path: pathlib.Path) -> str:
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
def load_documents(folder: pathlib.Path) -> List[str]:
documents = []
for file_path in folder.glob("*"):
if file_path.suffix.lower() == ".pdf":
documents.append(extract_text_from_pdf(file_path))
elif file_path.suffix.lower() in [".docx", ".doc"]:
documents.append(extract_text_from_docx(file_path))
elif file_path.suffix.lower() == ".txt":
documents.append(extract_text_from_txt(file_path))
return documents
def split_text(text: str, max_length: int = 500, overlap: int = 100) -> List[str]:
chunks = []
start = 0
while start < len(text):
end = start + max_length
chunks.append(text[start:end])
start += max_length - overlap
return chunks
documents = load_documents(DOCS_FOLDER)
all_chunks = []
for doc in documents:
all_chunks.extend(split_text(doc))
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
chunk_embeddings = embedding_model.encode(all_chunks)
embedding_dim = chunk_embeddings.shape[1]
faiss_index = faiss.IndexFlatL2(embedding_dim)
faiss_index.add(np.array(chunk_embeddings))
generator = pipeline("text-generation", model="gpt2", max_length=256)
def retrieve_context(query: str, k: int = 5) -> List[str]:
query_embedding = embedding_model.encode([query])
distances, indices = faiss_index.search(np.array(query_embedding), k)
return [all_chunks[idx] for idx in indices[0] if idx < len(all_chunks)]
def generate_answer(query: str) -> str:
context_chunks = retrieve_context(query)
context = "\n".join(context_chunks)
prompt = (
f"You are a customer support agent. Use the following context to answer the question.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
f"Answer:"
)
response = generator(prompt, max_new_tokens=100, do_sample=True, temperature=0.7)
generated_text = response[0]["generated_text"]
# Return only the text after the "Answer:" delimiter
if "Answer:" in generated_text:
answer = generated_text.split("Answer:", 1)[1].strip()
else:
answer = generated_text.strip()
return answer
# ====================================================
# 2. Speech-to-Text and Text-to-Speech Functions
# ====================================================
stt_model = whisper.load_model("base", device="cpu")
def speech_to_text(audio_array: np.ndarray, sample_rate: int = 16000) -> str:
audio_float = audio_array.astype(np.float32) / 32768.0
result = stt_model.transcribe(audio_float, fp16=False)
return result["text"]
def text_to_speech(text: str, lang="en", target_sample_rate: int = 24000) -> np.ndarray:
tts = gTTS(text, lang=lang)
mp3_fp = io.BytesIO()
tts.write_to_fp(mp3_fp)
mp3_fp.seek(0)
audio = AudioSegment.from_file(mp3_fp, format="mp3")
audio = audio.set_frame_rate(target_sample_rate).set_channels(1)
return np.array(audio.get_array_of_samples(), dtype=np.int16)
# ====================================================
# 3. RAGVoiceHandler: Integrating Voice & RAG
# ====================================================
class RAGVoiceHandler(AsyncStreamHandler):
def __init__(
self,
expected_layout: Literal["mono"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 480,
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=16000,
)
self.input_queue: asyncio.Queue = asyncio.Queue()
self.output_queue: asyncio.Queue = asyncio.Queue()
self.quit: asyncio.Event = asyncio.Event()
self.input_buffer = bytearray()
self.last_input_time = asyncio.get_event_loop().time()
def copy(self) -> "RAGVoiceHandler":
return RAGVoiceHandler(
expected_layout="mono",
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
async def stream(self) -> AsyncGenerator[bytes, None]:
while not self.quit.is_set():
try:
audio_data = await asyncio.wait_for(self.input_queue.get(), timeout=0.5)
self.input_buffer.extend(audio_data)
self.last_input_time = asyncio.get_event_loop().time()
except asyncio.TimeoutError:
if self.input_buffer:
audio_array = np.frombuffer(self.input_buffer, dtype=np.int16)
self.input_buffer = bytearray()
query_text = speech_to_text(audio_array, sample_rate=self.input_sample_rate)
if query_text.strip():
print("Transcribed query:", query_text)
answer_text = generate_answer(query_text)
print("Generated answer:", answer_text)
tts_audio = text_to_speech(answer_text, target_sample_rate=self.output_sample_rate)
self.output_queue.put_nowait((self.output_sample_rate, tts_audio))
await asyncio.sleep(0.1)
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
sample_rate, audio_array = frame
audio_bytes = audio_array.tobytes()
await self.input_queue.put(audio_bytes)
async def emit(self) -> tuple[int, np.ndarray] | None:
return await wait_for_item(self.output_queue)
def shutdown(self) -> None:
self.quit.set()
# ====================================================
# 4. Voice Streaming Setup & FastAPI Endpoints
# ====================================================
rtc_config = {
"iceServers": [
{"urls": "stun:stun.l.google.com:19302"},
{
"urls": "turn:turn.anyfirewall.com:443?transport=tcp",
"username": "webrtc",
"credential": "webrtc"
}
]
}
stream = Stream(
modality="audio",
mode="send-receive",
handler=RAGVoiceHandler(),
rtc_configuration=rtc_config,
concurrency_limit=5,
time_limit=90,
)
class InputData(BaseModel):
webrtc_id: str
app = FastAPI()
stream.mount(app)
@app.post("/input_hook")
async def input_hook(body: InputData):
stream.set_input(body.webrtc_id)
return {"status": "ok"}
@app.post("/webrtc/offer")
async def webrtc_offer(offer: dict):
return await stream.handle_offer(offer)
@app.post("/chat")
async def chat_endpoint(payload: dict):
question = payload.get("question", "")
if not question:
return {"error": "No question provided"}
answer = generate_answer(question)
return {"answer": answer}
@app.get("/")
async def index_endpoint():
index_path = current_dir / "index.html"
html_content = index_path.read_text()
return HTMLResponse(content=html_content)
# ====================================================
# 5. Application Runner
# ====================================================
if __name__ == "__main__":
mode = os.getenv("MODE", "PHONE")
if mode == "UI":
import gradio as gr
def gradio_chat(user_input):
return generate_answer(user_input)
iface = gr.Interface(fn=gradio_chat, inputs="text", outputs="text", title="Customer Support Chatbot")
iface.launch(server_port=7860)
elif mode == "PHONE":
uvicorn.run(app, host="0.0.0.0", port=7860)
else:
uvicorn.run(app, host="0.0.0.0", port=7860)