Spaces:
Sleeping
Sleeping
# Install/ import stuff we need | |
import os | |
import time | |
import re | |
import ast | |
import pandas as pd | |
import gradio as gr | |
from typing import Type, List, Literal | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from pydantic import BaseModel, Field | |
# Creating an alias for pandas DataFrame using Type | |
PandasDataFrame = Type[pd.DataFrame] | |
# class Document(BaseModel): | |
# """Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py""" | |
# page_content: str | |
# """String text.""" | |
# metadata: dict = Field(default_factory=dict) | |
# """Arbitrary metadata about the page content (e.g., source, relationships to other | |
# documents, etc.). | |
# """ | |
# type: Literal["Document"] = "Document" | |
class Document(BaseModel): | |
"""Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py""" | |
page_content: str | |
"""String text.""" | |
metadata: dict = Field(default_factory=dict) | |
"""Arbitrary metadata about the page content (e.g., source, relationships to other | |
documents, etc.). | |
""" | |
type: Literal["Document"] = "Document" | |
split_strat = ["\n\n", "\n", ". ", "! ", "? "] | |
chunk_size = 500 | |
chunk_overlap = 0 | |
start_index = True | |
## Parse files | |
def determine_file_type(file_path): | |
""" | |
Determine the file type based on its extension. | |
Parameters: | |
file_path (str): Path to the file. | |
Returns: | |
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html'). | |
""" | |
return os.path.splitext(file_path)[1].lower() | |
def parse_file(file_paths, text_column='text'): | |
""" | |
Accepts a list of file paths, determines each file's type based on its extension, | |
and passes it to the relevant parsing function. | |
Parameters: | |
file_paths (list): List of file paths. | |
text_column (str): Name of the column in CSV/Excel files that contains the text content. | |
Returns: | |
dict: A dictionary with file paths as keys and their parsed content (or error message) as values. | |
""" | |
if not isinstance(file_paths, list): | |
raise ValueError("Expected a list of file paths.") | |
extension_to_parser = { | |
# '.pdf': parse_pdf, | |
# '.docx': parse_docx, | |
# '.txt': parse_txt, | |
# '.html': parse_html, | |
# '.htm': parse_html, # Considering both .html and .htm for HTML files | |
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column), | |
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column), | |
'.parquet': lambda file_path: parse_csv_or_excel(file_path, text_column) | |
} | |
parsed_contents = {} | |
file_names = [] | |
for file_path in file_paths: | |
print(file_path.name) | |
#file = open(file_path.name, 'r') | |
#print(file) | |
file_extension = determine_file_type(file_path.name) | |
if file_extension in extension_to_parser: | |
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name) | |
else: | |
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}" | |
filename_end = get_file_path_end(file_path.name) | |
file_names.append(filename_end) | |
return parsed_contents, file_names | |
def text_regex_clean(text): | |
# Merge hyphenated words | |
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text) | |
# If a double newline ends in a letter, add a full stop. | |
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text) | |
# Fix newlines in the middle of sentences | |
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip()) | |
# Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
text = re.sub(r" ", " ", text) | |
# Add full stops and new lines between words with no space between where the second one has a capital letter | |
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text) | |
return text | |
def parse_csv_or_excel(file_path, text_column = "text"): | |
""" | |
Read in a CSV or Excel file. | |
Parameters: | |
file_path (str): Path to the CSV file. | |
text_column (str): Name of the column in the CSV file that contains the text content. | |
Returns: | |
Pandas DataFrame: Dataframe output from file read | |
""" | |
#out_df = pd.DataFrame() | |
file_list = [string.name for string in file_path] | |
print(file_list) | |
data_file_names = [string for string in file_list if "tokenised" not in string] | |
#for file_path in file_paths: | |
file_extension = determine_file_type(data_file_names[0]) | |
file_name = get_file_path_end(data_file_names[0]) | |
file_names = [file_name] | |
print(file_extension) | |
if file_extension == ".csv": | |
df = pd.read_csv(data_file_names[0], low_memory=False) | |
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name'] | |
df['source'] = file_name | |
df['page_section'] = "" | |
elif file_extension == ".xlsx": | |
df = pd.read_excel(data_file_names[0], engine='openpyxl') | |
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name'] | |
df['source'] = file_name | |
df['page_section'] = "" | |
elif file_extension == ".parquet": | |
df = pd.read_parquet(data_file_names[0]) | |
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name'] | |
df['source'] = file_name | |
df['page_section'] = "" | |
else: | |
print(f"Unsupported file type: {file_extension}") | |
return pd.DataFrame(), ['Please choose a valid file type'] | |
message = "Loaded in file. Now converting to document format." | |
print(message) | |
return df, file_names, message | |
def get_file_path_end(file_path): | |
match = re.search(r'(.*[\/\\])?(.+)$', file_path) | |
filename_end = match.group(2) if match else '' | |
return filename_end | |
# + | |
# Convert parsed text to docs | |
# - | |
def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]: | |
""" | |
Converts the output of parse_file (a dictionary of file paths to content) | |
to a list of Documents with metadata. | |
""" | |
doc_sections = [] | |
parent_doc_sections = [] | |
for file_path, content in text_dict.items(): | |
ext = os.path.splitext(file_path)[1].lower() | |
# Depending on the file extension, handle the content | |
# if ext == '.pdf': | |
# docs, page_docs = pdf_text_to_docs(content, chunk_size) | |
# elif ext in ['.html', '.htm', '.txt', '.docx']: | |
# docs = html_text_to_docs(content, chunk_size) | |
if ext in ['.csv', '.xlsx']: | |
docs, page_docs = csv_excel_text_to_docs(content, chunk_size) | |
else: | |
print(f"Unsupported file type {ext} for {file_path}. Skipping.") | |
continue | |
filename_end = get_file_path_end(file_path) | |
#match = re.search(r'(.*[\/\\])?(.+)$', file_path) | |
#filename_end = match.group(2) if match else '' | |
# Add filename as metadata | |
for doc in docs: doc.metadata["source"] = filename_end | |
#for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end | |
doc_sections.extend(docs) | |
#parent_doc_sections.extend(parent_docs) | |
return doc_sections#, page_docs | |
def write_out_metadata_as_string(metadata_in): | |
# If metadata_in is a single dictionary, wrap it in a list | |
if isinstance(metadata_in, dict): | |
metadata_in = [metadata_in] | |
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata'] | |
return metadata_string | |
def combine_metadata_columns(df, cols): | |
df['metadatas'] = "{" | |
df['blank_column'] = "" | |
for n, col in enumerate(cols): | |
df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="") | |
df['metadatas'] = df['metadatas'] + '"' + cols[n] + '": "' + df[col] + '", ' | |
df['metadatas'] = (df['metadatas'] + "}").str.replace(', }', '}') | |
return df['metadatas'] | |
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None) -> List[Document]: | |
"""Converts a DataFrame's content to a list of Documents with metadata.""" | |
#print(df.head()) | |
print("Converting to documents.") | |
doc_sections = [] | |
df[text_column] = df[text_column].astype(str) # Ensure column is a string column | |
# For each row in the dataframe | |
for idx, row in df.iterrows(): | |
# Extract the text content for the document | |
doc_content = row[text_column] | |
# Generate metadata containing other columns' data | |
metadata = {"row": idx + 1} | |
for col, value in row.items(): | |
if col != text_column: | |
metadata[col] = value | |
metadata_string = write_out_metadata_as_string(metadata)[0] | |
# If chunk_size is provided, split the text into chunks | |
if chunk_size: | |
# Assuming you have a text splitter function similar to the PDF handling | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
split_strat=split_strat, | |
start_index=start_index | |
) #Other arguments as required by the splitter | |
sections = text_splitter.split_text(doc_content) | |
# For each section, create a Document object | |
for i, section in enumerate(sections): | |
section = '. '.join([metadata_string, section]) | |
doc = Document(page_content=section, | |
metadata={**metadata, "section": i, "row_section": f"{metadata['row']}-{i}"}) | |
doc_sections.append(doc) | |
#print("Chunking currently disabled") | |
else: | |
# If no chunk_size is provided, create a single Document object for the row | |
#doc_content = '. '.join([metadata_string, doc_content]) | |
doc = Document(page_content=doc_content, metadata=metadata) | |
doc_sections.append(doc) | |
message = "Data converted to document format. Now creating/loading document embeddings." | |
print(message) | |
return doc_sections, message | |
def clean_line_breaks(text): | |
# Replace \n and \r\n with a space | |
return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') | |
def parse_metadata(row): | |
try: | |
# Ensure the 'title' field is a string and clean line breaks | |
#if 'TITLE' in row: | |
# row['TITLE'] = clean_line_breaks(row['TITLE']) | |
# Convert the row to a string if it's not already | |
row_str = str(row) if not isinstance(row, str) else row | |
row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') | |
# Parse the string | |
metadata = ast.literal_eval(row_str) | |
# Process metadata | |
return metadata | |
except SyntaxError as e: | |
print(f"Failed to parse metadata: {row_str}") | |
print(f"Error: {e}") | |
# Handle the error or log it | |
return None # or some default value | |
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None, progress=gr.Progress()) -> List[Document]: | |
"""Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata.""" | |
ingest_tic = time.perf_counter() | |
doc_sections = [] | |
df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column | |
cols = [col for col in df.columns if col != text_column] | |
df["metadata"] = combine_metadata_columns(df, cols) | |
df = df.rename(columns={text_column:"page_content"}) | |
#print(df[["page_content", "metadata"]].to_dict(orient='records')) | |
#doc_sections = df[["page_content", "metadata"]].to_dict(orient='records') | |
#doc_sections = [Document(**row) for row in df[["page_content", "metadata"]].to_dict(orient='records')] | |
# Create a list of Document objects | |
doc_sections = [Document(page_content=row['page_content'], | |
metadata= parse_metadata(row["metadata"])) | |
for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")] | |
ingest_toc = time.perf_counter() | |
ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds" | |
print(ingest_time_out) | |
return doc_sections, "Finished splitting documents" | |
# # Functions for working with documents after loading them back in | |
def pull_out_data(series): | |
# define a lambda function to convert each string into a tuple | |
to_tuple = lambda x: eval(x) | |
# apply the lambda function to each element of the series | |
series_tup = series.apply(to_tuple) | |
series_tup_content = list(zip(*series_tup))[1] | |
series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip() | |
return series | |
def docs_from_csv(df): | |
import ast | |
documents = [] | |
page_content = pull_out_data(df["0"]) | |
metadatas = pull_out_data(df["1"]) | |
for x in range(0,len(df)): | |
new_doc = Document(page_content=page_content[x], metadata=metadatas[x]) | |
documents.append(new_doc) | |
return documents | |
def docs_from_lists(docs, metadatas): | |
documents = [] | |
for x, doc in enumerate(docs): | |
new_doc = Document(page_content=doc, metadata=metadatas[x]) | |
documents.append(new_doc) | |
return documents | |
def docs_elements_from_csv_save(docs_path="documents.csv"): | |
documents = pd.read_csv(docs_path) | |
docs_out = docs_from_csv(documents) | |
out_df = pd.DataFrame(docs_out) | |
docs_content = pull_out_data(out_df[0].astype(str)) | |
docs_meta = pull_out_data(out_df[1].astype(str)) | |
doc_sources = [d['source'] for d in docs_meta] | |
return out_df, docs_content, docs_meta, doc_sources | |