data_text_search / search_funcs /semantic_functions.py
seanpedrickcase's picture
Now checks for output folder before saving. Minor code cleaning
2089141
raw
history blame
25.1 kB
import os
import time
import pandas as pd
from typing import Type
import gradio as gr
import numpy as np
from datetime import datetime
#from transformers import AutoModel, AutoTokenizer
from search_funcs.helper_functions import get_file_path_end
#import torch
from torch import cuda, backends#, tensor, mm, utils
from sentence_transformers import SentenceTransformer
today_rev = datetime.now().strftime("%Y%m%d")
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
from search_funcs.helper_functions import create_highlighted_excel_wb, ensure_output_folder_exists
PandasDataFrame = Type[pd.DataFrame]
# Load embeddings - Jina - deprecated
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
# embeddings_name = "jinaai/jina-embeddings-v2-small-en"
# local_embeddings_location = "model/jina/"
# revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
# try:
# embeddings_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
# except:
# embeddings_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
# Load embeddings
embeddings_name = "BAAI/bge-small-en-v1.5"
# Define a list of possible local locations to search for the model
local_embeddings_locations = [
"model/bge/", # Potential local location
"/model/bge/", # Potential location in Docker container
"/home/user/app/model/bge/" # This is inside a Docker container
]
# Attempt to load the model from each local location
for location in local_embeddings_locations:
try:
embeddings_model = SentenceTransformer(location)
print(f"Found local model installation at: {location}")
break # Exit the loop if the model is found
except Exception as e:
print(f"Failed to load model from {location}: {e}")
continue
else:
# If the loop completes without finding the model in any local location
embeddings_model = SentenceTransformer(embeddings_name)
print("Could not find local model installation. Downloading from Huggingface")
def docs_to_bge_embed_np_array(docs_out, in_file, embeddings_state, output_file_state, clean, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings_model = embeddings_model, progress=gr.Progress(track_tqdm=True)):
'''
Takes a Langchain document class and saves it into a Numpy array.
'''
ensure_output_folder_exists()
if not in_file:
out_message = "No input file found. Please load in at least one file."
print(out_message)
return out_message, None, None, output_file_state
progress(0.6, desc = "Loading/creating embeddings")
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
#print(file_list)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
# print("embeddings loaded: ", embeddings_out)
if embeddings_state.size == 0:
tic = time.perf_counter()
print("Starting to embed documents.")
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
#embeddings_out = calc_bge_norm_embeddings(page_contents, embeddings_model, tokenizer)
embeddings_out = embeddings_model.encode(sentences=page_contents, show_progress_bar = True, batch_size = 32, normalize_embeddings=True) # For BGE
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
if clean == "Yes": data_file_name_no_ext = data_file_name_no_ext + "_cleaned"
else: data_file_name_no_ext = data_file_name_no_ext
progress(0.9, desc = "Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_bge_embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_bge_embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
output_file_state.append(semantic_search_file_name)
return out_message, embeddings_out, output_file_state, output_file_state
return out_message, embeddings_out, output_file_state, output_file_state
else:
# Just return existing embeddings if already exist
embeddings_out = embeddings_state
print(out_message)
return out_message, embeddings_out, output_file_state, output_file_state
def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column, progress = gr.Progress(track_tqdm=True)):
def create_docs_keep_from_df(df):
dict_out = {'ids' : [df['ids']],
'documents': [df['documents']],
'metadatas': [df['metadatas']],
'distances': [round(df['distances'].astype(float), 4)],
'embeddings': None
}
return dict_out
# Prepare the DataFrame by transposing
#df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True)
# Keep only documents with a certain score
#print(df_docs)
docs_scores = df_docs["distances"] #.astype(float)
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :]
#docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit))
#print(docs_keep)
if score_more_limit.empty:
return pd.DataFrame()
# Only keep sources that are at least 100 characters long
docs_len = score_more_limit["documents"].str.len() >= 100
#print(docs_len)
length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100
#docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit))
#print(length_more_limit)
if length_more_limit.empty:
return pd.DataFrame()
length_more_limit['ids'] = length_more_limit['ids'].astype(int)
#length_more_limit.to_csv("length_more_limit.csv", index = None)
# Explode the 'metadatas' dictionary into separate columns
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series)
#print(length_more_limit)
#print(df_metadata_expanded)
# Concatenate the original DataFrame with the expanded metadata DataFrame
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1)
results_df_out = results_df_out.rename(columns={"documents":"search_text"})
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore")
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3)
# Join back to original df
# results_df_out = orig_df.merge(length_more_limit[['ids', 'distances']], left_index = True, right_on = "ids", how="inner").sort_values("distances")
# Join on additional files
if not in_join_file.empty:
progress(0.5, desc = "Joining on additional data file")
join_df = in_join_file
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
# Duplicates dropped so as not to expand out dataframe
join_df = join_df.drop_duplicates(in_join_column)
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
return results_df_out
def bge_simple_retrieval(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)): # ,vectorstore, embeddings
# print("vectorstore loaded: ", vectorstore)
progress(0, desc = "Conducting semantic search")
ensure_output_folder_exists()
print("Searching")
# Convert it to a PyTorch tensor and transfer to GPU
#vectorstore_tensor = tensor(vectorstore).to(device)
# Load the sentence transformer model and move it to GPU
embeddings = embeddings.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings.encode(query_str, normalize_embeddings=True)
# query = calc_bge_norm_embeddings(query_str, embeddings_model=embeddings_model, tokenizer=tokenizer)
#query_tensor = tensor(query).to(device)
# if query_tensor.dim() == 1:
# query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row
# Sentence transformers method, not used:
cosine_similarities = query @ vectorstore.T
#cosine_similarities = util.cos_sim(query_tensor, vectorstore_tensor)[0]
#top_results = torch.topk(cos_scores, k=top_k)
# Normalize the query tensor and vectorstore tensor
#query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
#vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)
# Calculate cosine similarities (batch processing)
#cosine_similarities = mm(query_norm, vectorstore_norm.T)
#cosine_similarities = mm(query_tensor, vectorstore_tensor.T)
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Convert to a NumPy array if it's still a PyTorch tensor
#cosine_similarities = cosine_similarities.cpu().numpy()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from docs
page_contents = [doc.page_content for doc in docs]
page_meta = [doc.metadata for doc in docs]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_docs = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
print("Search complete")
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = "output/semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
print("Saving search output to file")
progress(0.7, desc = "Saving search output to file")
# Highlight found text and save to file
results_df_out_wb = create_highlighted_excel_wb(results_df_out, query_str, "search_text")
results_df_out_wb.save(results_df_name)
#results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
print("Returning results")
return results_first_text, results_df_name
def docs_to_jina_embed_np_array_deprecated(docs_out, in_file, embeddings_state, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file.
'''
if not in_file:
out_message = "No input file found. Please load in at least one file."
print(out_message)
return out_message, None, None
progress(0.6, desc = "Loading/creating embeddings")
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
#print(file_list)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
# print("embeddings loaded: ", embeddings_out)
if embeddings_state.size == 0:
tic = time.perf_counter()
print("Starting to embed documents.")
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
progress(0.9, desc = "Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
return out_message, embeddings_out, semantic_search_file_name
return out_message, embeddings_out, None
else:
# Just return existing embeddings if already exist
embeddings_out = embeddings_state
print(out_message)
return out_message, embeddings_out, None#, None
def jina_simple_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)): # ,vectorstore, embeddings
# print("vectorstore loaded: ", vectorstore)
progress(0, desc = "Conducting semantic search")
print("Searching")
# Convert it to a PyTorch tensor and transfer to GPU
vectorstore_tensor = tensor(vectorstore).to(device)
# Load the sentence transformer model and move it to GPU
embeddings = embeddings.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings.encode(query_str)
query_tensor = tensor(query).to(device)
if query_tensor.dim() == 1:
query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row
# Normalize the query tensor and vectorstore tensor
query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)
# Calculate cosine similarities (batch processing)
cosine_similarities = mm(query_norm, vectorstore_norm.T)
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Convert to a NumPy array if it's still a PyTorch tensor
cosine_similarities = cosine_similarities.cpu().numpy()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from docs
page_contents = [doc.page_content for doc in docs]
page_meta = [doc.metadata for doc in docs]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_docs = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
print("Search complete")
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = "semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
print("Saving search output to file")
progress(0.7, desc = "Saving search output to file")
results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
print("Returning results")
return results_first_text, results_df_name
# Deprecated Chroma functions - kept just in case needed in future.
# Chroma support is currently deprecated
# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
#import chromadb
#from chromadb.config import Settings
#from typing_extensions import Protocol
#from chromadb import Documents, EmbeddingFunction, Embeddings
# Remove Chroma database file. If it exists as it can cause issues
#chromadb_file = "chroma.sqlite3"
#if os.path.isfile(chromadb_file):
# os.remove(chromadb_file)
def docs_to_chroma_save_deprecated(docs_out, embeddings = embeddings_model, progress=gr.Progress()):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file. Not currently used.
'''
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
page_meta = [doc.metadata for doc in docs_out]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
tic = time.perf_counter()
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
#pd.Series(embeddings_list).to_csv("embeddings_out.csv")
# Jina tiny
# This takes about 300 seconds for 240,000 records = 800 / second, 1024 max length
# For 50k records:
# 61 seconds at 1024 max length
# 55 seconds at 512 max length
# 43 seconds at 256 max length
# 31 seconds at 128 max length
# The embedding took 1372.5 seconds at 256 max length for 655,020 case notes
# BGE small
# 96 seconds for 50k records at 512 length
# all-MiniLM-L6-v2
# 42.5 seconds at (256?) max length
# paraphrase-MiniLM-L3-v2
# 22 seconds for 128 max length
print(time_out)
chroma_tic = time.perf_counter()
# Create a new Chroma collection to store the documents and metadata. We don't need to specify an embedding fuction, and the default will be used.
client = chromadb.PersistentClient(path="./last_year", settings=Settings(
anonymized_telemetry=False))
try:
print("Deleting existing collection.")
#collection = client.get_collection(name="my_collection")
client.delete_collection(name="my_collection")
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
except:
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
# Match batch size is about 40,000, so add that amount in a loop
def create_batch_ranges(in_list, batch_size=40000):
total_rows = len(in_list)
ranges = []
for start in range(0, total_rows, batch_size):
end = min(start + batch_size, total_rows)
ranges.append(range(start, end))
return ranges
batch_ranges = create_batch_ranges(embeddings_list)
print(batch_ranges)
for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"):
collection.add(
documents = page_contents[row_range[0]:row_range[-1]],
embeddings = embeddings_list[row_range[0]:row_range[-1]],
metadatas = page_meta[row_range[0]:row_range[-1]],
ids = ids[row_range[0]:row_range[-1]])
#print("Here")
# print(collection.count())
#chatf.vectorstore = vectorstore_func
chroma_toc = time.perf_counter()
chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds"
print(chroma_time_out)
out_message = "Document processing complete"
return out_message, collection
def chroma_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, embeddings = embeddings_model): # ,vectorstore, embeddings
query = embeddings.encode(query_str).tolist()
docs = vectorstore.query(
query_embeddings=query,
n_results= k_val # No practical limit on number of responses returned
#where={"metadata_field": "is_equal_to_this"},
#where_document={"$contains":"search_string"}
)
df_docs = pd.DataFrame(data={'ids': docs['ids'][0],
'documents': docs['documents'][0],
'metadatas':docs['metadatas'][0],
'distances':docs['distances'][0]#,
#'embeddings': docs['embeddings']
})
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
results_df_name = "output/semantic_search_result.csv"
results_df_out.to_csv(results_df_name, index= None)
results_first_text = results_df_out[orig_df_col].iloc[0]
return results_first_text, results_df_name