Minor function documentation changes. Requirements update for new Gradio and version of Gradio annotator that allows for saving preferred redaction format and to include box id
f6e6d80
import os | |
import logging | |
import pandas as pd | |
import gradio as gr | |
from gradio_image_annotation import image_annotator | |
from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, TESSERACT_FOLDER, POPPLER_FOLDER, REDACTION_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_BULK_TEXTRACT_CALL_OPTIONS, TEXTRACT_BULK_ANALYSIS_BUCKET, TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, SESSION_OUTPUT_FOLDER, LOAD_PREVIOUS_TEXTRACT_JOBS_S3, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC, HOST_NAME, DEFAULT_COST_CODE, OUTPUT_COST_CODES_PATH, OUTPUT_ALLOW_LIST_PATH | |
from tools.helper_functions import put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, no_redaction_option, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken, reset_base_dataframe, reset_ocr_base_dataframe, update_cost_code_dataframe_from_dropdown_select | |
from tools.aws_functions import upload_file_to_s3, download_file_from_s3 | |
from tools.file_redaction import choose_and_run_redactor | |
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names, convert_review_df_to_annotation_json | |
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df, df_select_callback_ocr, df_select_callback_textract_api | |
from tools.data_anonymise import anonymise_data_files | |
from tools.auth import authenticate_user | |
from tools.load_spacy_model_custom_recognisers import custom_entities | |
from tools.custom_csvlogger import CSVLogger_custom | |
from tools.find_duplicate_pages import identify_similar_pages | |
from tools.textract_batch_call import analyse_document_with_textract_api, poll_bulk_textract_analysis_progress_and_download, load_in_textract_job_details, check_for_provided_job_id | |
# Suppress downcasting warnings | |
pd.set_option('future.no_silent_downcasting', True) | |
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER'] | |
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER', "CUSTOM_FUZZY"] | |
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend | |
chosen_comprehend_entities.extend(custom_entities) | |
full_comprehend_entity_list.extend(custom_entities) | |
# Entities for local PII redaction option | |
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"] | |
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM', 'CUSTOM_FUZZY'] | |
log_file_name = 'log.csv' | |
file_input_height = 200 | |
if RUN_AWS_FUNCTIONS == "1": | |
default_ocr_val = textract_option | |
default_pii_detector = local_pii_detector | |
else: | |
default_ocr_val = text_ocr_option | |
default_pii_detector = local_pii_detector | |
# Create the gradio interface | |
app = gr.Blocks(theme = gr.themes.Base(), fill_width=True) | |
with app: | |
### | |
# STATE VARIABLES | |
### | |
# Pymupdf doc and all image annotations objects need to be stored as State objects as they do not have a standard Gradio component equivalent | |
pdf_doc_state = gr.State([]) | |
all_image_annotations_state = gr.State([]) | |
all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_decision_process_table", visible=False, type="pandas", wrap=True) | |
review_file_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="review_file_df", visible=False, type="pandas", wrap=True) | |
session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False) | |
host_name_textbox = gr.Textbox(label= "host_name_textbox", value=HOST_NAME, visible=False) | |
s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False) | |
session_output_folder_textbox = gr.Textbox(value = SESSION_OUTPUT_FOLDER, label="session_output_folder_textbox", visible=False) | |
output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False) | |
input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False) | |
first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False) | |
second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False) | |
do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False) | |
save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False) | |
prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False) | |
document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False) | |
page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False) | |
images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False) | |
all_img_details_state = gr.State([]) | |
output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False) | |
output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False) | |
text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False) | |
log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False) | |
duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=[], multiselect=True, allow_custom_value=True,visible=False) | |
# Backup versions of these objects in case you make a mistake | |
backup_review_state = gr.Dataframe(visible=False) | |
backup_image_annotations_state = gr.State([]) | |
backup_recogniser_entity_dataframe_base = gr.Dataframe(visible=False) | |
# Logging state | |
feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + log_file_name, visible=False) | |
feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=FEEDBACK_LOGS_FOLDER, visible=False) | |
access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + log_file_name, visible=False) | |
access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=ACCESS_LOGS_FOLDER, visible=False) | |
usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + log_file_name, visible=False) | |
usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=USAGE_LOGS_FOLDER, visible=False) | |
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False) | |
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False) | |
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False) | |
textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False) | |
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) | |
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) | |
blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) # Left blank for when user does not want to report file names | |
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False) | |
doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False) | |
latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False) # Latest review file path output from redaction | |
latest_ocr_file_path = gr.Textbox(label = "latest_ocr_file_path", value="", visible=False) # Latest ocr file path output from text extraction | |
data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False) | |
data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False) | |
data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False) | |
data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False) | |
# Constants just to use with the review dropdowns for filtering by various columns | |
label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False) | |
text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False) | |
page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False) | |
actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes. | |
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on | |
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False) | |
## Annotator zoom value | |
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False) | |
zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False) | |
zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False) | |
clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False) | |
prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False) | |
prepare_for_review_bool_false = gr.Checkbox(label="prepare_for_review_bool_false", value=False, visible=False) | |
prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False) | |
## Settings page variables | |
default_deny_list_file_name = "default_deny_list.csv" | |
default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name | |
in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False) | |
fully_redacted_list_file_name = "default_fully_redacted_list.csv" | |
fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name | |
in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False) | |
# S3 settings for default allow list load | |
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False) | |
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False) | |
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=OUTPUT_ALLOW_LIST_PATH, visible=False) | |
s3_bulk_textract_default_bucket = gr.Textbox(label = "Default Textract bulk S3 bucket", value=TEXTRACT_BULK_ANALYSIS_BUCKET, visible=False) | |
s3_bulk_textract_input_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, visible=False) | |
s3_bulk_textract_output_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, visible=False) | |
successful_textract_api_call_number = gr.Number(precision=0, value=0, visible=False) | |
load_s3_bulk_textract_logs_bool = gr.Textbox(label = "Load Textract logs or not", value=LOAD_PREVIOUS_TEXTRACT_JOBS_S3, visible=False) | |
s3_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_JOBS_S3_LOC, visible=False) | |
local_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_JOBS_LOCAL_LOC, visible=False) | |
s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False) | |
default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=OUTPUT_COST_CODES_PATH, visible=False) | |
enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False) | |
default_cost_code_textbox = gr.Textbox(label = "Default cost code textbox", value=DEFAULT_COST_CODE, visible=False) | |
# Base tables that are not modified subsequent to load | |
recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="recogniser_entity_dataframe_base", show_search="filter", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True) | |
all_line_level_ocr_results_df_base = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"), label="All OCR results", type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, visible=False) | |
all_line_level_ocr_results_df_placeholder = gr.Dataframe(visible=False) | |
cost_code_dataframe_base = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', wrap=True, max_height=200, visible=False) | |
# Duplicate page detection | |
in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False) | |
duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True) | |
# Tracking variables for current page (not visible) | |
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False) | |
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False) | |
# Placeholders for elements that may be made visible later below depending on environment variables | |
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True) | |
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis. Please contact Finance if you can't find your cost code in the given list.", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=False) | |
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False) | |
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False) | |
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2) | |
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2) | |
only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False) | |
# Textract API call placeholders in case option not selected in config | |
job_name_textbox = gr.Textbox(value="", label="Bulk Textract call", visible=False) | |
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=False) | |
job_id_textbox = gr.Textbox(label = "Latest job ID for bulk document analysis", value='', visible=False) | |
check_state_of_textract_api_call_btn = gr.Button("Check state of Textract document job and download", variant="secondary", visible=False) | |
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=False) | |
job_type_dropdown = gr.Dropdown(value="document_text_detection", choices=["document_text_detection", "document_analysis"], label="Job type of Textract analysis job", allow_custom_value=False, visible=False) | |
textract_job_detail_df = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Previous job details", visible=False, type="pandas", wrap=True) | |
selected_job_id_row = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Selected job id row", visible=False, type="pandas", wrap=True) | |
is_a_textract_api_call = gr.Checkbox(value=False, label="is_a_textract_api_call", visible=False) | |
job_output_textbox = gr.Textbox(value="", label="Textract call outputs", visible=False) | |
textract_job_output_file = gr.File(label="Textract job output files", height=file_input_height, visible=False) | |
### | |
# UI DESIGN | |
### | |
gr.Markdown( | |
"""# Document redaction | |
Redact personally identifiable information (PII) from documents (PDF, images), open text, or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview. | |
To identify text in documents, the 'Local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost. | |
After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction. | |
NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""") | |
### | |
# REDACTION PDF/IMAGES TABLE | |
### | |
with gr.Tab("Redact PDFs/images"): | |
with gr.Accordion("Redact document", open = True): | |
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=file_input_height) | |
text_extract_method_radio = gr.Radio(label="""Choose text extraction method. Local options are lower quality but cost nothing - they may be worth a try if you are willing to spend some time reviewing outputs. AWS Textract has a cost per page - £2.66 ($3.50) per 1,000 pages with signature detection (default), £1.14 ($1.50) without. Go to Redaction settings - AWS Textract options to remove signature detection.""", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option]) | |
with gr.Accordion("AWS Textract signature detection (default is on)", open = False): | |
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=["Extract handwriting", "Extract signatures"]) | |
with gr.Row(equal_height=True): | |
pii_identification_method_drop = gr.Radio(label = """Choose personal information detection method. The local model is lower quality but costs nothing - it may be worth a try if you are willing to spend some time reviewing outputs, or if you are only interested in searching for custom search terms (see Redaction settings - custom deny list). AWS Comprehend has a cost of around £0.0075 ($0.01) per 10,000 characters.""", value = default_pii_detector, choices=[no_redaction_option, local_pii_detector, aws_pii_detector]) | |
if SHOW_COSTS == "True": | |
with gr.Accordion("Estimated costs and time taken", open = True, visible=True): | |
with gr.Row(equal_height=True): | |
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True) | |
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True) | |
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost (£)", value=0.00, precision=2, visible=True) | |
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2) | |
if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True": | |
with gr.Accordion("Apply cost code", open = True, visible=True): | |
with gr.Row(): | |
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Existing cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', visible=True, wrap=True, max_height=200) | |
with gr.Column(): | |
reset_cost_code_dataframe_button = gr.Button(value="Reset code code table filter") | |
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=True) | |
if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True": | |
with gr.Accordion("Submit whole document to AWS Textract API (quicker, max 3,000 pages per document)", open = False, visible=True): | |
with gr.Row(equal_height=True): | |
gr.Markdown("""Document will be submitted to AWS Textract API service to extract all text in the document. Processing will take place on (secure) AWS servers, and outputs will be stored on S3 for up to 7 days. To download the results, click 'Check status' below and they will be downloaded if ready.""") | |
with gr.Row(equal_height=True): | |
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract API call", variant="primary", visible=True) | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
textract_job_detail_df = gr.Dataframe(label="Previous job details", visible=True, type="pandas", wrap=True, interactive=True, row_count=(0, 'fixed'), col_count=(6,'fixed'), static_columns=[0,1,2,3,4,5]) | |
with gr.Column(scale=1): | |
job_id_textbox = gr.Textbox(label = "Job ID to check status", value='', visible=True) | |
check_state_of_textract_api_call_btn = gr.Button("Check status of Textract job and download", variant="secondary", visible=True) | |
with gr.Row(): | |
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=True) | |
textract_job_output_file = gr.File(label="Textract job output files", height=100, visible=True) | |
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""") | |
document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4) | |
with gr.Row(): | |
redaction_output_summary_textbox = gr.Textbox(label="Output summary", scale=1) | |
output_file = gr.File(label="Output files", scale = 2)#, height=file_input_height) | |
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False) | |
# Feedback elements are invisible until revealed by redaction action | |
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) | |
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False) | |
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) | |
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) | |
### | |
# REVIEW REDACTIONS TAB | |
### | |
with gr.Tab("Review redactions", id="tab_object_annotation"): | |
with gr.Accordion(label = "Review PDF redactions", open=True): | |
output_review_files = gr.File(label="Upload original PDF and 'review_file' csv here to review suggested redactions. The 'ocr_output' file can also be optionally provided for text search.", file_count='multiple', height=file_input_height) | |
upload_previous_review_file_btn = gr.Button("Review PDF and 'review file' csv provided above", variant="secondary") | |
with gr.Row(): | |
annotate_zoom_in = gr.Button("Zoom in", visible=False) | |
annotate_zoom_out = gr.Button("Zoom out", visible=False) | |
with gr.Row(): | |
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(equal_height=True): | |
annotation_last_page_button = gr.Button("Previous page", scale = 4) | |
annotate_current_page = gr.Number(value=0, label="Current page", precision=0, scale = 2, min_width=50) | |
annotate_max_pages = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50) | |
annotation_next_page_button = gr.Button("Next page", scale = 4) | |
zoom_str = str(annotator_zoom_number) + '%' | |
annotator = image_annotator( | |
label="Modify redaction boxes", | |
label_list=["Redaction"], | |
label_colors=[(0, 0, 0)], | |
show_label=False, | |
height=zoom_str, | |
width=zoom_str, | |
box_min_size=1, | |
box_selected_thickness=2, | |
handle_size=4, | |
sources=None,#["upload"], | |
show_clear_button=False, | |
show_share_button=False, | |
show_remove_button=False, | |
handles_cursor=True, | |
interactive=False | |
) | |
with gr.Row(equal_height=True): | |
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4) | |
annotate_current_page_bottom = gr.Number(value=0, label="Current page", precision=0, interactive=True, scale = 2, min_width=50) | |
annotate_max_pages_bottom = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50) | |
annotation_next_page_button_bottom = gr.Button("Next page", scale = 4) | |
with gr.Column(scale=1): | |
annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary") | |
update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary") | |
with gr.Accordion("Search suggested redactions", open=True): | |
with gr.Row(equal_height=True): | |
recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True) | |
page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True) | |
text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True) | |
recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=(3,"fixed"), type="pandas", label="Search results. Click to go to page", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, max_height=400) | |
with gr.Row(equal_height=True): | |
exclude_selected_row_btn = gr.Button(value="Exclude specific row from redactions") | |
exclude_selected_btn = gr.Button(value="Exclude all items in table from redactions") | |
with gr.Row(equal_height=True): | |
reset_dropdowns_btn = gr.Button(value="Reset filters") | |
undo_last_removal_btn = gr.Button(value="Undo last element removal") | |
selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="selected_entity_dataframe_row", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True) | |
with gr.Accordion("Search all extracted text", open=True): | |
all_line_level_ocr_results_df = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"), label="All OCR results", visible=True, type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, max_height=400) | |
reset_all_ocr_results_btn = gr.Button(value="Reset OCR output table filter") | |
with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False): | |
convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary") | |
adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf']) | |
convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary") | |
### | |
# IDENTIFY DUPLICATE PAGES TAB | |
### | |
with gr.Tab(label="Identify duplicate pages"): | |
with gr.Accordion("Identify duplicate pages to redact", open = True): | |
in_duplicate_pages = gr.File(label="Upload multiple 'ocr_output.csv' data files from redaction jobs here to compare", file_count="multiple", height=file_input_height, file_types=['.csv']) | |
with gr.Row(): | |
duplicate_threshold_value = gr.Number(value=0.9, label="Minimum similarity to be considered a duplicate (maximum = 1)", scale =1) | |
find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages", variant="primary", scale = 4) | |
duplicate_pages_out = gr.File(label="Duplicate pages analysis output", file_count="multiple", height=file_input_height, file_types=['.csv']) | |
### | |
# TEXT / TABULAR DATA TAB | |
### | |
with gr.Tab(label="Open text or Excel/csv files"): | |
gr.Markdown("""### Choose open text or a tabular data file (xlsx or csv) to redact.""") | |
with gr.Accordion("Paste open text", open = False): | |
in_text = gr.Textbox(label="Enter open text", lines=10) | |
with gr.Accordion("Upload xlsx or csv files", open = True): | |
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height) | |
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True) | |
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).") | |
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector]) | |
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary") | |
with gr.Row(): | |
text_output_summary = gr.Textbox(label="Output result") | |
text_output_file = gr.File(label="Output files") | |
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False) | |
# Feedback elements are invisible until revealed by redaction action | |
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False) | |
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.", | |
choices=["The results were good", "The results were not good"], visible=False, show_label=True) | |
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False) | |
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False) | |
### | |
# SETTINGS TAB | |
### | |
with gr.Tab(label="Redaction settings"): | |
with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True): | |
with gr.Row(): | |
with gr.Column(): | |
in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height) | |
in_allow_list_text = gr.Textbox(label="Custom allow list load status") | |
with gr.Column(): | |
in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height) | |
in_deny_list_text = gr.Textbox(label="Custom deny list load status") | |
with gr.Column(): | |
in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height) | |
in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status") | |
with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False): | |
with gr.Row(): | |
in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True) | |
in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True) | |
in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True) | |
with gr.Accordion("Select entity types to redact", open = True): | |
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)") | |
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)") | |
with gr.Row(): | |
max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=1, minimum=0, maximum=9, precision=0) | |
match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True) | |
with gr.Accordion("Redact only selected pages", open = False): | |
with gr.Row(): | |
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact") | |
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact") | |
with gr.Accordion("AWS options", open = False): | |
#with gr.Row(): | |
in_redact_language = gr.Dropdown(value = REDACTION_LANGUAGE, choices = [REDACTION_LANGUAGE], label="Redaction language", multiselect=False, visible=False) | |
with gr.Row(): | |
aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password") | |
aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password") | |
with gr.Accordion("Settings for open text or xlsx/csv files", open = False): | |
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with 'REDACTED'") | |
log_files_output = gr.File(label="Log file output", interactive=False) | |
with gr.Accordion("Combine multiple review files", open = False): | |
multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv']) | |
merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary") | |
with gr.Accordion("View all output files from this session", open = False): | |
all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary") | |
all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False) | |
### | |
### UI INTERACTION ### | |
### | |
### | |
# PDF/IMAGE REDACTION | |
### | |
# Recalculate estimated costs based on changes to inputs | |
if SHOW_COSTS == 'True': | |
# Calculate costs | |
total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
text_extract_method_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number]) | |
# Calculate time taken | |
total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number]) | |
# Allow user to select items from cost code dataframe for cost code | |
if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"): | |
cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop]) | |
reset_cost_code_dataframe_button.click(reset_base_dataframe, inputs=[cost_code_dataframe_base], outputs=[cost_code_dataframe]) | |
cost_code_choice_drop.select(update_cost_code_dataframe_from_dropdown_select, inputs=[cost_code_choice_drop, cost_code_dataframe_base], outputs=[cost_code_dataframe]) | |
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\ | |
success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base]).\ | |
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]) | |
# Run redaction function | |
document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call]).\ | |
success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop, cost_code_dataframe_base]).\ | |
success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path], | |
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path], api_name="redact_doc").\ | |
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]) | |
# If the app has completed a batch of pages, it will rerun the redaction process until the end of all pages in the document | |
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path], | |
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\ | |
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]) | |
# If a file has been completed, the function will continue onto the next document | |
latest_file_completed_text.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path], | |
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\ | |
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\ | |
success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title]) | |
# If the line level ocr results are changed by load in by user or by a new redaction task, replace the ocr results displayed in the table | |
all_line_level_ocr_results_df_base.change(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df]) | |
# Send whole document to Textract for text extraction | |
send_document_to_textract_api_btn.click(analyse_document_with_textract_api, inputs=[prepared_pdf_state, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, handwrite_signature_checkbox, successful_textract_api_call_number], outputs=[job_output_textbox, job_id_textbox, job_type_dropdown, successful_textract_api_call_number, is_a_textract_api_call]) | |
check_state_of_textract_api_call_btn.click(check_for_provided_job_id, inputs=[job_id_textbox]).\ | |
success(poll_bulk_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_bulk_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df]).\ | |
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]) | |
textract_job_detail_df.select(df_select_callback_textract_api, inputs=[textract_output_found_checkbox], outputs=[job_id_textbox, job_type_dropdown, selected_job_id_row]) | |
### | |
# REVIEW PDF REDACTIONS | |
### | |
# Upload previous files for modifying redactions | |
upload_previous_review_file_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\ | |
success(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\ | |
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base], api_name="prepare_doc").\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]) | |
# Page number controls | |
annotate_current_page.change(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]) | |
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]) | |
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]) | |
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom]) | |
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom]) | |
annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page]) | |
# Apply page redactions | |
annotation_button_apply.click(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state], scroll_to_output=True) | |
# Review table controls | |
recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown]) | |
page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown]) | |
text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown]) | |
recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=[annotate_current_page, selected_entity_dataframe_row])#.\ | |
#success(update_selected_review_df_row_colour, inputs=[selected_entity_dataframe_row, review_file_state], outputs=[review_file_state]).\ | |
#success(update_annotator_page_from_review_df, inputs=[review_file_state, images_pdf_state, page_sizes, annotate_current_page, annotate_previous_page, all_image_annotations_state, annotator], outputs=[annotator, all_image_annotations_state]) | |
reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]) | |
# Exclude current selection from annotator and outputs | |
# Exclude only row | |
exclude_selected_row_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\ | |
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]) | |
# Exclude everything visible in table | |
exclude_selected_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\ | |
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]) | |
undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]) | |
update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\ | |
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\ | |
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]) | |
# Review OCR text buttom | |
all_line_level_ocr_results_df.select(df_select_callback_ocr, inputs=[all_line_level_ocr_results_df], outputs=[annotate_current_page, selected_entity_dataframe_row], scroll_to_output=True) | |
reset_all_ocr_results_btn.click(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df]) | |
# Convert review file to xfdf Adobe format | |
convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\ | |
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\ | |
success(convert_df_to_xfdf, inputs=[output_review_files, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out]) | |
# Convert xfdf Adobe file back to review_file.csv | |
convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\ | |
success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\ | |
success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[output_review_files], scroll_to_output=True) | |
### | |
# TABULAR DATA REDACTION | |
### | |
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\ | |
success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count]) | |
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data") | |
# If the output file count text box changes, keep going with redacting each data file until done | |
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\ | |
success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title]) | |
### | |
# IDENTIFY DUPLICATE PAGES | |
### | |
find_duplicate_pages_btn.click(fn=identify_similar_pages, inputs=[in_duplicate_pages, duplicate_threshold_value, output_folder_textbox], outputs=[duplicate_pages_df, duplicate_pages_out]) | |
### | |
# SETTINGS PAGE INPUT / OUTPUT | |
### | |
# If a custom allow/deny/duplicate page list is uploaded | |
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state]) | |
in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state]) | |
in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state]) | |
# The following allows for more reliable updates of the data in the custom list dataframes | |
in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state]) | |
in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state]) | |
in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state]) | |
# Merge multiple review csv files together | |
merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out) | |
# | |
all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files) | |
### | |
# APP LOAD AND LOGGING | |
### | |
# Get connection details on app load | |
if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True": | |
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder]).\ | |
success(load_in_textract_job_details, inputs=[load_s3_bulk_textract_logs_bool, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[textract_job_detail_df]) | |
else: | |
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder]) | |
# If relevant environment variable is set, load in the Textract job details | |
# If relevant environment variable is set, load in the default allow list file from S3 or locally. Even when setting S3 path, need to local path to give a download location | |
if GET_DEFAULT_ALLOW_LIST == "True" and (ALLOW_LIST_PATH or S3_ALLOW_LIST_PATH): | |
if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH and RUN_AWS_FUNCTIONS == "1": | |
print("Downloading allow list from S3") | |
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\ | |
success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list]) | |
print("Successfully loaded allow list from S3") | |
elif os.path.exists(ALLOW_LIST_PATH): | |
print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH) | |
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list]) | |
else: print("Could not load in default allow list") | |
# If relevant environment variable is set, load in the default cost code file from S3 or locally | |
if GET_COST_CODES == "True" and (COST_CODES_PATH or S3_COST_CODES_PATH): | |
if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH and RUN_AWS_FUNCTIONS == "1": | |
print("Downloading cost codes from S3") | |
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\ | |
success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop]) | |
print("Successfully loaded cost codes from S3") | |
elif os.path.exists(COST_CODES_PATH): | |
print("Loading cost codes from default cost codes path location:", COST_CODES_PATH) | |
app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop]) | |
else: print("Could not load in cost code data") | |
### | |
# LOGGING | |
### | |
# Log usernames and times of access to file (to know who is using the app when running on AWS) | |
access_callback = CSVLogger_custom(dataset_file_name=log_file_name) | |
access_callback.setup([session_hash_textbox, host_name_textbox], ACCESS_LOGS_FOLDER) | |
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox, host_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | |
# User submitted feedback for pdf redactions | |
pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name) | |
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER) | |
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text]) | |
# User submitted feedback for data redactions | |
data_callback = CSVLogger_custom(dataset_file_name=log_file_name) | |
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER) | |
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text]) | |
# Log processing time/token usage when making a query | |
usage_callback = CSVLogger_custom(dataset_file_name=log_file_name) | |
if DISPLAY_FILE_NAMES_IN_LOGS == 'True': | |
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER) | |
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | |
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | |
else: | |
usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER) | |
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | |
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\ | |
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) | |
if __name__ == "__main__": | |
if RUN_DIRECT_MODE == "0": | |
if os.environ['COGNITO_AUTH'] == "1": | |
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH) | |
else: | |
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH) | |
else: | |
from tools.cli_redact import main | |
main(first_loop_state, latest_file_completed=0, redaction_output_summary_textbox="", output_file_list=None, | |
log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0, | |
current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results_df = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Extract handwriting", "Extract signatures"]) | |
# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app | |
# with gr.Tab(label="Advanced options"): | |
# with gr.Accordion(label = "AWS data access", open = True): | |
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)") | |
# with gr.Row(): | |
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"]) | |
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary") | |
# aws_log_box = gr.Textbox(label="AWS data load status") | |
# ### Loading AWS data ### | |
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box]) |