Spaces:
Sleeping
Sleeping
Major update. General code revision. Improved config variables. Dataframe based review frame now includes text, items can be searched and excluded. Costs now estimated. Option for adding cost codes added. Option to extract text only.
0ea8b9e
import re | |
import secrets | |
import base64 | |
import time | |
import boto3 | |
import botocore | |
import pandas as pd | |
from faker import Faker | |
from gradio import Progress | |
from typing import List, Dict, Any | |
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult | |
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine | |
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy | |
from tools.config import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY, OUTPUT_FOLDER | |
from tools.helper_functions import get_file_name_without_type, read_file, detect_file_type | |
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_word_list_recogniser, CustomWordFuzzyRecognizer, custom_entities | |
from tools.custom_image_analyser_engine import do_aws_comprehend_call | |
# Use custom version of analyze_dict to be able to track progress | |
from tools.presidio_analyzer_custom import analyze_dict | |
fake = Faker("en_UK") | |
def fake_first_name(x): | |
return fake.first_name() | |
def initial_clean(text): | |
#### Some of my cleaning functions | |
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| ' | |
html_start_pattern_end_dots_regex = r'<(.*?)\.\.' | |
non_ascii_pattern = r'[^\x00-\x7F]+' | |
multiple_spaces_regex = r'\s{2,}' | |
# Define a list of patterns and their replacements | |
patterns = [ | |
(html_pattern_regex, ' '), | |
(html_start_pattern_end_dots_regex, ' '), | |
(non_ascii_pattern, ' '), | |
(multiple_spaces_regex, ' ') | |
] | |
# Apply each regex replacement | |
for pattern, replacement in patterns: | |
text = re.sub(pattern, replacement, text) | |
return text | |
def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep): | |
output = [] | |
if hasattr(result, 'value'): | |
text = result.value[data_row] | |
else: | |
text = "" | |
if isinstance(recognizer_result, list): | |
for sub_result in recognizer_result: | |
if isinstance(text, str): | |
found_text = text[sub_result.start:sub_result.end] | |
else: | |
found_text = '' | |
analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep} | |
analysis_explanation.update({ | |
'data_row': str(data_row), | |
'column': list(df_dict.keys())[dictionary_key], | |
'entity': found_text | |
}) | |
output.append(str(analysis_explanation)) | |
return output | |
# Writing decision making process to file | |
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str: | |
""" | |
Generate a detailed output of the decision process for entity recognition. | |
This function takes the results from the analyzer and the original data dictionary, | |
and produces a string output detailing the decision process for each recognized entity. | |
It includes information such as entity type, position, confidence score, and the context | |
in which the entity was found. | |
Args: | |
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer. | |
df_dict (Dict[str, List[Any]]): The original data in dictionary format. | |
Returns: | |
str: A string containing the detailed decision process output. | |
""" | |
decision_process_output = [] | |
keys_to_keep = ['entity_type', 'start', 'end'] | |
# Run through each column to analyse for PII | |
for i, result in enumerate(analyzer_results): | |
# If a single result | |
if isinstance(result, RecognizerResult): | |
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) | |
# If a list of results | |
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult): | |
for x, recognizer_result in enumerate(result.recognizer_results): | |
decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep)) | |
else: | |
try: | |
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep)) | |
except Exception as e: | |
print(e) | |
decision_process_output_str = '\n'.join(decision_process_output) | |
return decision_process_output_str | |
def anon_consistent_names(df): | |
# ## Pick out common names and replace them with the same person value | |
df_dict = df.to_dict(orient="list") | |
analyzer = AnalyzerEngine() | |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer) | |
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en") | |
analyzer_results = list(analyzer_results) | |
# + tags=[] | |
text = analyzer_results[3].value | |
# + tags=[] | |
recognizer_result = str(analyzer_results[3].recognizer_results) | |
# + tags=[] | |
recognizer_result | |
# + tags=[] | |
data_str = recognizer_result # abbreviated for brevity | |
# Adjusting the parse_dict function to handle trailing ']' | |
# Splitting the main data string into individual list strings | |
list_strs = data_str[1:-1].split('], [') | |
def parse_dict(s): | |
s = s.strip('[]') # Removing any surrounding brackets | |
items = s.split(', ') | |
d = {} | |
for item in items: | |
key, value = item.split(': ') | |
if key == 'score': | |
d[key] = float(value) | |
elif key in ['start', 'end']: | |
d[key] = int(value) | |
else: | |
d[key] = value | |
return d | |
# Re-running the improved processing code | |
result = [] | |
for lst_str in list_strs: | |
# Splitting each list string into individual dictionary strings | |
dict_strs = lst_str.split(', type: ') | |
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings | |
# Parsing each dictionary string | |
dicts = [parse_dict(d) for d in dict_strs] | |
result.append(dicts) | |
#result | |
# + tags=[] | |
names = [] | |
for idx, paragraph in enumerate(text): | |
paragraph_texts = [] | |
for dictionary in result[idx]: | |
if dictionary['type'] == 'PERSON': | |
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']]) | |
names.append(paragraph_texts) | |
# + tags=[] | |
# Flatten the list of lists and extract unique names | |
unique_names = list(set(name for sublist in names for name in sublist)) | |
# + tags=[] | |
fake_names = pd.Series(unique_names).apply(fake_first_name) | |
# + tags=[] | |
mapping_df = pd.DataFrame(data={"Unique names":unique_names, | |
"Fake names": fake_names}) | |
# + tags=[] | |
# Convert mapping dataframe to dictionary | |
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match | |
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])} | |
# + tags=[] | |
name_map | |
# + tags=[] | |
scrubbed_df_consistent_names = df.replace(name_map, regex = True) | |
# + tags=[] | |
scrubbed_df_consistent_names | |
return scrubbed_df_consistent_names | |
def anonymise_data_files(file_paths: List[str], | |
in_text: str, | |
anon_strat: str, | |
chosen_cols: List[str], | |
language: str, | |
chosen_redact_entities: List[str], | |
in_allow_list: List[str] = None, | |
latest_file_completed: int = 0, | |
out_message: list = [], | |
out_file_paths: list = [], | |
log_files_output_paths: list = [], | |
in_excel_sheets: list = [], | |
first_loop_state: bool = False, | |
output_folder: str = OUTPUT_FOLDER, | |
in_deny_list:list[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=0, | |
pii_identification_method:str="Local", | |
chosen_redact_comprehend_entities:List[str]=[], | |
comprehend_query_number:int=0, | |
aws_access_key_textbox:str='', | |
aws_secret_key_textbox:str='', | |
progress: Progress = Progress(track_tqdm=True)): | |
""" | |
This function anonymises data files based on the provided parameters. | |
Parameters: | |
- file_paths (List[str]): A list of file paths to anonymise. | |
- in_text (str): The text to anonymise if file_paths is 'open_text'. | |
- anon_strat (str): The anonymisation strategy to use. | |
- chosen_cols (List[str]): A list of column names to anonymise. | |
- language (str): The language of the text to anonymise. | |
- chosen_redact_entities (List[str]): A list of entities to redact. | |
- in_allow_list (List[str], optional): A list of allowed values. Defaults to None. | |
- latest_file_completed (int, optional): The index of the last file completed. Defaults to 0. | |
- out_message (list, optional): A list to store output messages. Defaults to an empty list. | |
- out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list. | |
- log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list. | |
- in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list. | |
- first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False. | |
- output_folder (str, optional): The output folder path. Defaults to the global output_folder variable. | |
- in_deny_list (list[str], optional): A list of specific terms to redact. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions. | |
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions. | |
- progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True. | |
""" | |
tic = time.perf_counter() | |
comprehend_client = "" | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
latest_file_completed = 0 | |
out_message = [] | |
out_file_paths = [] | |
# Load file | |
# If out message or out_file_paths are blank, change to a list so it can be appended to | |
if isinstance(out_message, str): | |
out_message = [out_message] | |
#print("log_files_output_paths:",log_files_output_paths) | |
if isinstance(log_files_output_paths, str): | |
log_files_output_paths = [] | |
if not out_file_paths: | |
out_file_paths = [] | |
if in_allow_list: | |
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist] | |
else: | |
in_allow_list_flat = [] | |
anon_df = pd.DataFrame() | |
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed. | |
if pii_identification_method == "AWS Comprehend": | |
print("Trying to connect to AWS Comprehend service") | |
if aws_access_key_textbox and aws_secret_key_textbox: | |
print("Connecting to Comprehend using AWS access key and secret keys from textboxes.") | |
print("aws_access_key_textbox:", aws_access_key_textbox) | |
print("aws_secret_access_key:", aws_secret_key_textbox) | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=aws_access_key_textbox, | |
aws_secret_access_key=aws_secret_key_textbox) | |
elif RUN_AWS_FUNCTIONS == "1": | |
print("Connecting to Comprehend via existing SSO connection") | |
comprehend_client = boto3.client('comprehend') | |
elif AWS_ACCESS_KEY and AWS_SECRET_KEY: | |
print("Getting Comprehend credentials from environment variables") | |
comprehend_client = boto3.client('comprehend', | |
aws_access_key_id=AWS_ACCESS_KEY, | |
aws_secret_access_key=AWS_SECRET_KEY) | |
else: | |
comprehend_client = "" | |
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method." | |
print(out_message) | |
# Check if files and text exist | |
if not file_paths: | |
if in_text: | |
file_paths=['open_text'] | |
else: | |
out_message = "Please enter text or a file to redact." | |
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= len(file_paths): | |
print("Last file reached") #, returning files:", str(latest_file_completed)) | |
# Set to a very high number so as not to mess with subsequent file processing by the user | |
latest_file_completed = 99 | |
final_out_message = '\n'.join(out_message) | |
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths | |
file_path_loop = [file_paths[int(latest_file_completed)]] | |
for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "file"): | |
if anon_file=='open_text': | |
anon_df = pd.DataFrame(data={'text':[in_text]}) | |
chosen_cols=['text'] | |
sheet_name = "" | |
file_type = "" | |
out_file_part = anon_file | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=OUTPUT_FOLDER) | |
else: | |
# If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately. | |
file_type = detect_file_type(anon_file) | |
print("File type is:", file_type) | |
out_file_part = get_file_name_without_type(anon_file.name) | |
if file_type == 'xlsx': | |
print("Running through all xlsx sheets") | |
#anon_xlsx = pd.ExcelFile(anon_file) | |
if not in_excel_sheets: | |
out_message.append("No Excel sheets selected. Please select at least one to anonymise.") | |
continue | |
anon_xlsx = pd.ExcelFile(anon_file) | |
# Create xlsx file: | |
anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx" | |
from openpyxl import Workbook | |
wb = Workbook() | |
wb.save(anon_xlsx_export_file_name) | |
# Iterate through the sheet names | |
for sheet_name in in_excel_sheets: | |
# Read each sheet into a DataFrame | |
if sheet_name not in anon_xlsx.sheet_names: | |
continue | |
anon_df = pd.read_excel(anon_file, sheet_name=sheet_name) | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) | |
else: | |
sheet_name = "" | |
anon_df = read_file(anon_file) | |
out_file_part = get_file_name_without_type(anon_file.name) | |
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder) | |
# Increase latest file completed count unless we are at the last file | |
if latest_file_completed != len(file_paths): | |
print("Completed file number:", str(latest_file_completed)) | |
latest_file_completed += 1 | |
toc = time.perf_counter() | |
out_time = f"in {toc - tic:0.1f} seconds." | |
print(out_time) | |
if anon_strat == "encrypt": | |
out_message.append(". Your decryption key is " + key_string + ".") | |
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in") | |
out_message_out = '\n'.join(out_message) | |
out_message_out = out_message_out + " " + out_time | |
out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app." | |
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths | |
def anon_wrapper_func( | |
anon_file: str, | |
anon_df: pd.DataFrame, | |
chosen_cols: List[str], | |
out_file_paths: List[str], | |
out_file_part: str, | |
out_message: str, | |
excel_sheet_name: str, | |
anon_strat: str, | |
language: str, | |
chosen_redact_entities: List[str], | |
in_allow_list: List[str], | |
file_type: str, | |
anon_xlsx_export_file_name: str, | |
log_files_output_paths: List[str], | |
in_deny_list: List[str]=[], | |
max_fuzzy_spelling_mistakes_num:int=0, | |
pii_identification_method:str="Local", | |
chosen_redact_comprehend_entities:List[str]=[], | |
comprehend_query_number:int=0, | |
comprehend_client:botocore.client.BaseClient="", | |
output_folder: str = OUTPUT_FOLDER | |
): | |
""" | |
This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file. | |
Input Variables: | |
- anon_file: The path to the file containing the data to be anonymized. | |
- anon_df: The pandas DataFrame containing the data to be anonymized. | |
- chosen_cols: A list of column names to be anonymized. | |
- out_file_paths: A list of paths where the anonymized files will be saved. | |
- out_file_part: A part of the output file name. | |
- out_message: A message to be displayed during the anonymization process. | |
- excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported. | |
- anon_strat: The anonymization strategy to be applied. | |
- language: The language of the data to be anonymized. | |
- chosen_redact_entities: A list of entities to be redacted. | |
- in_allow_list: A list of allowed values. | |
- file_type: The type of file to be exported. | |
- anon_xlsx_export_file_name: The name of the anonymized Excel file. | |
- log_files_output_paths: A list of paths where the log files will be saved. | |
- in_deny_list: List of specific terms to remove from the data. | |
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. | |
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). | |
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service. | |
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. | |
- comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab. | |
- output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable. | |
""" | |
def check_lists(list1, list2): | |
return any(string in list2 for string in list1) | |
def get_common_strings(list1, list2): | |
""" | |
Finds the common strings between two lists. | |
Args: | |
list1: The first list of strings. | |
list2: The second list of strings. | |
Returns: | |
A list containing the common strings. | |
""" | |
common_strings = [] | |
for string in list1: | |
if string in list2: | |
common_strings.append(string) | |
return common_strings | |
if pii_identification_method == "AWS Comprehend" and comprehend_client == "": | |
raise("Connection to AWS Comprehend service not found, please check connection details.") | |
# Check for chosen col, skip file if not found | |
all_cols_original_order = list(anon_df.columns) | |
any_cols_found = check_lists(chosen_cols, all_cols_original_order) | |
if any_cols_found == False: | |
out_message = "No chosen columns found in dataframe: " + out_file_part | |
print(out_message) | |
else: | |
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order) | |
# Split dataframe to keep only selected columns | |
#print("Remaining columns to redact:", chosen_cols_in_anon_df) | |
anon_df_part = anon_df[chosen_cols_in_anon_df] | |
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1) | |
# Anonymise the selected columns | |
anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client) | |
# Rejoin the dataframe together | |
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1) | |
anon_df_out = anon_df_out[all_cols_original_order] | |
# Export file | |
# Rename anonymisation strategy for file path naming | |
if anon_strat == "replace with 'REDACTED'": anon_strat_txt = "redact_replace" | |
elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type" | |
elif anon_strat == "redact completely": anon_strat_txt = "redact_remove" | |
else: anon_strat_txt = anon_strat | |
# If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv | |
if file_type == 'xlsx': | |
anon_export_file_name = anon_xlsx_export_file_name | |
# Create a Pandas Excel writer using XlsxWriter as the engine. | |
with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a') as writer: | |
# Write each DataFrame to a different worksheet. | |
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None) | |
decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt" | |
with open(decision_process_log_output_file, "w") as f: | |
f.write(decision_process_output_str) | |
else: | |
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv" | |
anon_df_out.to_csv(anon_export_file_name, index = None) | |
decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt" | |
with open(decision_process_log_output_file, "w") as f: | |
f.write(decision_process_output_str) | |
out_file_paths.append(anon_export_file_name) | |
log_files_output_paths.append(decision_process_log_output_file) | |
# As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques. | |
out_file_paths = list(set(out_file_paths)) | |
# Print result text to output text box if just anonymising open text | |
if anon_file=='open_text': | |
out_message = [anon_df_out['text'][0]] | |
return out_file_paths, out_message, key_string, log_files_output_paths | |
def anonymise_script(df:pd.DataFrame, anon_strat:str, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], in_deny_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=0, pii_identification_method:str="Local", chosen_redact_comprehend_entities:List[str]=[], comprehend_query_number:int=0, comprehend_client:botocore.client.BaseClient="", custom_entities=custom_entities, progress=Progress(track_tqdm=False)): | |
''' | |
Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen. | |
''' | |
print("Identifying personal information") | |
analyse_tic = time.perf_counter() | |
# Initialize analyzer_results as an empty dictionary to store results by column | |
results_by_column = {} | |
key_string = "" | |
# DataFrame to dict | |
df_dict = df.to_dict(orient="list") | |
if in_allow_list: | |
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist] | |
else: | |
in_allow_list_flat = [] | |
if isinstance(in_deny_list, pd.DataFrame): | |
if not in_deny_list.empty: | |
in_deny_list = in_deny_list.iloc[:, 0].tolist() | |
else: | |
# Handle the case where the DataFrame is empty | |
in_deny_list = [] # or some default value | |
# Sort the strings in order from the longest string to the shortest | |
in_deny_list = sorted(in_deny_list, key=len, reverse=True) | |
if in_deny_list: | |
nlp_analyser.registry.remove_recognizer("CUSTOM") | |
new_custom_recogniser = custom_word_list_recogniser(in_deny_list) | |
nlp_analyser.registry.add_recognizer(new_custom_recogniser) | |
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer") | |
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=in_deny_list, spelling_mistakes_max=in_deny_list, search_whole_phrase=max_fuzzy_spelling_mistakes_num) | |
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) | |
#analyzer = nlp_analyser #AnalyzerEngine() | |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser) | |
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED) | |
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer) | |
analyzer_results = [] | |
if pii_identification_method == "Local": | |
# Use custom analyzer to be able to track progress with Gradio | |
custom_results = analyze_dict(batch_analyzer, | |
df_dict, | |
language=language, | |
entities=chosen_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=in_allow_list_flat) | |
# Initialize results_by_column with custom entity results | |
for result in custom_results: | |
results_by_column[result.key] = result | |
# Convert the dictionary of results back to a list | |
analyzer_results = list(results_by_column.values()) | |
# AWS Comprehend calls | |
elif pii_identification_method == "AWS Comprehend" and comprehend_client: | |
# Only run Local anonymisation for entities that are not covered by AWS Comprehend | |
if custom_entities: | |
custom_redact_entities = [ | |
entity for entity in chosen_redact_comprehend_entities | |
if entity in custom_entities | |
] | |
if custom_redact_entities: | |
# Get results from analyze_dict | |
custom_results = analyze_dict(batch_analyzer, | |
df_dict, | |
language=language, | |
entities=custom_redact_entities, | |
score_threshold=score_threshold, | |
return_decision_process=True, | |
allow_list=in_allow_list_flat) | |
# Initialize results_by_column with custom entity results | |
for result in custom_results: | |
results_by_column[result.key] = result | |
max_retries = 3 | |
retry_delay = 3 | |
# Process each text column in the dictionary | |
for column_name, texts in progress.tqdm(df_dict.items(), desc="Querying AWS Comprehend service.", unit = "Columns"): | |
# Get or create DictAnalyzerResult for this column | |
if column_name in results_by_column: | |
column_results = results_by_column[column_name] | |
else: | |
column_results = DictAnalyzerResult( | |
recognizer_results=[[] for _ in texts], | |
key=column_name, | |
value=texts | |
) | |
# Process each text in the column | |
for text_idx, text in progress.tqdm(enumerate(texts), desc="Querying AWS Comprehend service.", unit = "Row"): | |
for attempt in range(max_retries): | |
try: | |
response = comprehend_client.detect_pii_entities( | |
Text=str(text), | |
LanguageCode=language | |
) | |
comprehend_query_number += 1 | |
# Add all entities from this text to the column's recognizer_results | |
for entity in response["Entities"]: | |
if entity.get("Type") not in chosen_redact_comprehend_entities: | |
continue | |
recognizer_result = RecognizerResult( | |
entity_type=entity["Type"], | |
start=entity["BeginOffset"], | |
end=entity["EndOffset"], | |
score=entity["Score"] | |
) | |
column_results.recognizer_results[text_idx].append(recognizer_result) | |
break # Success, exit retry loop | |
except Exception as e: | |
if attempt == max_retries - 1: | |
print(f"AWS Comprehend calls failed for text: {text[:100]}... due to", e) | |
raise | |
time.sleep(retry_delay) | |
# Store or update the column results | |
results_by_column[column_name] = column_results | |
# Convert the dictionary of results back to a list | |
analyzer_results = list(results_by_column.values()) | |
elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client): | |
raise("Unable to redact, Comprehend connection details not found.") | |
else: | |
print("Unable to redact.") | |
# Usage in the main function: | |
decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict) | |
analyse_toc = time.perf_counter() | |
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds." | |
print(analyse_time_out) | |
# Create faker function (note that it has to receive a value) | |
#fake = Faker("en_UK") | |
#def fake_first_name(x): | |
# return fake.first_name() | |
# Set up the anonymization configuration WITHOUT DATE_TIME | |
simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}') | |
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}') | |
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}') | |
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}') | |
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}') | |
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption. | |
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}') | |
if anon_strat == "replace with 'REDACTED'": chosen_mask_config = simple_replace_config | |
if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config | |
if anon_strat == "redact completely": chosen_mask_config = redact_config | |
if anon_strat == "hash": chosen_mask_config = hash_config | |
if anon_strat == "mask": chosen_mask_config = mask_config | |
if anon_strat == "encrypt": | |
chosen_mask_config = people_encrypt_config | |
# Generate a 128-bit AES key. Then encode the key using base64 to get a string representation | |
key = secrets.token_bytes(16) # 128 bits = 16 bytes | |
key_string = base64.b64encode(key).decode('utf-8') | |
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config | |
# I think in general people will want to keep date / times - removed Mar 2025 as I don't want to assume for people. | |
#keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}') | |
combined_config = {**chosen_mask_config} #, **keep_date_config} | |
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config) | |
scrubbed_df = pd.DataFrame(anonymizer_results) | |
return scrubbed_df, key_string, decision_process_output_str |