Spaces:
Running
Running
Updated packages. Improve hierarchy vis. Better models - mixedbread and phi3. Now option to split texts into sentences before modelling.
04a15c5
# Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe | |
#os.system("pip install scipy==1.11.4") | |
import gradio as gr | |
from datetime import datetime | |
import pandas as pd | |
import numpy as np | |
import time | |
from bertopic import BERTopic | |
from funcs.clean_funcs import initial_clean | |
from funcs.anonymiser import expand_sentences_spacy | |
from funcs.helper_functions import read_file, zip_folder, delete_files_in_folder, save_topic_outputs | |
from funcs.embeddings import make_or_load_embeddings | |
from funcs.bertopic_vis_documents import visualize_documents_custom, visualize_hierarchical_documents_custom, hierarchical_topics_custom, visualize_hierarchy_custom | |
from sentence_transformers import SentenceTransformer | |
from sklearn.pipeline import make_pipeline | |
from sklearn.decomposition import TruncatedSVD | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import funcs.anonymiser as anon | |
from umap import UMAP | |
from torch import cuda, backends, version | |
# Default seed, can be changed in number selection on options page | |
random_seed = 42 | |
# Check for torch cuda | |
# If you want to disable cuda for testing purposes | |
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
print("Is CUDA enabled? ", cuda.is_available()) | |
print("Is a CUDA device available on this computer?", backends.cudnn.enabled) | |
if cuda.is_available(): | |
torch_device = "gpu" | |
print("Cuda version installed is: ", version.cuda) | |
low_resource_mode = "No" | |
#os.system("nvidia-smi") | |
else: | |
torch_device = "cpu" | |
low_resource_mode = "Yes" | |
print("Device used is: ", torch_device) | |
today = datetime.now().strftime("%d%m%Y") | |
today_rev = datetime.now().strftime("%Y%m%d") | |
# Load embeddings | |
embeddings_name = "mixedbread-ai/mxbai-embed-large-v1" #"BAAI/large-small-en-v1.5" #"jinaai/jina-embeddings-v2-base-en" | |
# LLM model used for representing topics | |
hf_model_name = "QuantFactory/Phi-3-mini-128k-instruct-GGUF"#'second-state/stablelm-2-zephyr-1.6b-GGUF' #'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF' | |
hf_model_file = "Phi-3-mini-128k-instruct.Q4_K_M.gguf"#'stablelm-2-zephyr-1_6b-Q5_K_M.gguf' # 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf' | |
def pre_clean(data, in_colnames, data_file_name_no_ext, custom_regex, clean_text, drop_duplicate_text, anonymise_drop, sentence_split_drop, progress=gr.Progress(track_tqdm=True)): | |
output_text = "" | |
output_list = [] | |
progress(0, desc = "Cleaning data") | |
if not in_colnames: | |
error_message = "Please enter one column name to use for cleaning and finding topics." | |
print(error_message) | |
return error_message, None, data_file_name_no_ext, None, None | |
all_tic = time.perf_counter() | |
output_list = [] | |
#file_list = [string.name for string in in_files] | |
in_colnames_list_first = in_colnames[0] | |
if clean_text == "Yes": | |
clean_tic = time.perf_counter() | |
print("Starting data clean.") | |
data_file_name_no_ext = data_file_name_no_ext + "_clean" | |
if not custom_regex.empty: | |
data[in_colnames_list_first] = initial_clean(data[in_colnames_list_first], custom_regex.iloc[:, 0].to_list()) | |
else: | |
data[in_colnames_list_first] = initial_clean(data[in_colnames_list_first], []) | |
clean_toc = time.perf_counter() | |
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds." | |
print(clean_time_out) | |
if drop_duplicate_text == "Yes": | |
progress(0.3, desc= "Drop duplicates - remove short texts") | |
data_file_name_no_ext = data_file_name_no_ext + "_dedup" | |
#print("Removing duplicates and short entries from data") | |
#print("Data shape before: ", data.shape) | |
data[in_colnames_list_first] = data[in_colnames_list_first].str.strip() | |
data = data[data[in_colnames_list_first].str.len() >= 50] | |
data = data.drop_duplicates(subset = in_colnames_list_first).dropna(subset= in_colnames_list_first).reset_index() | |
#print("Data shape after duplicate/null removal: ", data.shape) | |
if anonymise_drop == "Yes": | |
progress(0.6, desc= "Anonymising data") | |
data_file_name_no_ext = data_file_name_no_ext + "_anon" | |
anon_tic = time.perf_counter() | |
data_anon_col, anonymisation_success = anon.anonymise_script(data, in_colnames_list_first, anon_strat="redact") | |
data[in_colnames_list_first] = data_anon_col | |
print(anonymisation_success) | |
anon_toc = time.perf_counter() | |
time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds" | |
if sentence_split_drop == "Yes": | |
progress(0.6, desc= "Splitting text into sentences") | |
data_file_name_no_ext = data_file_name_no_ext + "_split" | |
anon_tic = time.perf_counter() | |
data = expand_sentences_spacy(data, in_colnames_list_first) | |
data = data[data[in_colnames_list_first].str.len() >= 5] # Keep only rows with at least 5 characters | |
anon_toc = time.perf_counter() | |
time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds" | |
out_data_name = data_file_name_no_ext + "_" + today_rev + ".csv" | |
data.to_csv(out_data_name) | |
output_list.append(out_data_name) | |
all_toc = time.perf_counter() | |
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds." | |
print(time_out) | |
output_text = "Data clean completed." | |
return output_text, output_list, data, data_file_name_no_ext | |
def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, data_file_name_no_ext, custom_labels_df, return_intermediate_files, embeddings_super_compress, low_resource_mode, save_topic_model, embeddings_out, embeddings_type_state, zero_shot_similarity, random_seed, calc_probs, vectoriser_state, progress=gr.Progress(track_tqdm=True)): | |
all_tic = time.perf_counter() | |
progress(0, desc= "Loading data") | |
output_list = [] | |
file_list = [string.name for string in in_files] | |
if calc_probs == "No": | |
calc_probs = False | |
elif calc_probs == "Yes": | |
print("Calculating all probabilities.") | |
calc_probs = True | |
if not in_colnames: | |
error_message = "Please enter one column name to use for cleaning and finding topics." | |
print(error_message) | |
return error_message, None, data_file_name_no_ext, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, None, vectoriser_state, [] | |
in_colnames_list_first = in_colnames[0] | |
docs = list(data[in_colnames_list_first]) | |
# Check if embeddings are being loaded in | |
progress(0.2, desc= "Loading/creating embeddings") | |
print("Low resource mode: ", low_resource_mode) | |
if low_resource_mode == "No": | |
print("Using high resource embedding model") | |
# Define a list of possible local locations to search for the model | |
local_embeddings_locations = [ | |
"model/embed/", # Potential local location | |
"/model/embed/", # Potential location in Docker container | |
"/home/user/app/model/embed/" # This is inside a Docker container | |
] | |
# Attempt to load the model from each local location | |
for location in local_embeddings_locations: | |
try: | |
embedding_model = SentenceTransformer(location, truncate_dim=512) | |
print(f"Found local model installation at: {location}") | |
break # Exit the loop if the model is found | |
except Exception as e: | |
print(f"Failed to load model from {location}: {e}") | |
continue | |
else: | |
# If the loop completes without finding the model in any local location | |
embedding_model = SentenceTransformer(embeddings_name, truncate_dim=512) | |
print("Could not find local model installation. Downloading from Huggingface") | |
#embedding_model = SentenceTransformer(embeddings_name, truncate_dim=512) | |
# If tfidf embeddings currently exist, wipe these empty | |
if embeddings_type_state == "tfidf": | |
embeddings_out = np.array([]) | |
embeddings_type_state = "large" | |
# UMAP model uses Bertopic defaults | |
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', low_memory=False, random_state=random_seed) | |
else: | |
print("Choosing low resource TF-IDF model.") | |
embedding_model = make_pipeline( | |
TfidfVectorizer(), | |
TruncatedSVD(100, random_state=random_seed) | |
) | |
# If large embeddings currently exist, wipe these empty, then rename embeddings type | |
if embeddings_type_state == "large": | |
embeddings_out = np.array([]) | |
embeddings_type_state = "tfidf" | |
#umap_model = TruncatedSVD(n_components=5, random_state=random_seed) | |
# UMAP model uses Bertopic defaults | |
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', low_memory=True, random_state=random_seed) | |
embeddings_out = make_or_load_embeddings(docs, file_list, embeddings_out, embedding_model, embeddings_super_compress, low_resource_mode) | |
# This is saved as a Gradio state object | |
vectoriser_model = vectoriser_state | |
progress(0.3, desc= "Embeddings loaded. Creating BERTopic model") | |
fail_error_message = "Topic model creation failed. Try reducing minimum documents per topic on the slider above (try 15 or less), then click 'Extract topics' again. If that doesn't work, try running the first two clean steps on your data first (see Clean data above) to ensure there are no NaNs/missing texts in your data." | |
if not candidate_topics: | |
try: | |
topic_model = BERTopic( embedding_model=embedding_model, | |
vectorizer_model=vectoriser_model, | |
umap_model=umap_model, | |
min_topic_size = min_docs_slider, | |
nr_topics = max_topics_slider, | |
calculate_probabilities=calc_probs, | |
verbose = True) | |
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out) | |
if calc_probs == True: | |
topics_probs_out = pd.DataFrame(topic_model.probabilities_) | |
topics_probs_out_name = "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
topics_probs_out.to_csv(topics_probs_out_name) | |
output_list.append(topics_probs_out_name) | |
except Exception as error: | |
print(error) | |
print(fail_error_message) | |
return fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, [] | |
# Do this if you have pre-defined topics | |
else: | |
if low_resource_mode == "Yes": | |
error_message = "Zero shot topic modelling currently not compatible with low-resource embeddings. Please change this option to 'No' on the options tab and retry." | |
print(error_message) | |
return error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, [] | |
zero_shot_topics = read_file(candidate_topics.name) | |
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower()) | |
try: | |
topic_model = BERTopic( embedding_model=embedding_model, #embedding_model_pipe, # for Jina | |
vectorizer_model=vectoriser_model, | |
umap_model=umap_model, | |
min_topic_size = min_docs_slider, | |
nr_topics = max_topics_slider, | |
zeroshot_topic_list = zero_shot_topics_lower, | |
zeroshot_min_similarity = zero_shot_similarity, # 0.7 | |
calculate_probabilities=calc_probs, | |
verbose = True) | |
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out) | |
if calc_probs == True: | |
topics_probs_out = pd.DataFrame(topic_model.probabilities_) | |
topics_probs_out_name = "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
topics_probs_out.to_csv(topics_probs_out_name) | |
output_list.append(topics_probs_out_name) | |
except Exception as error: | |
print("An exception occurred:", error) | |
print(fail_error_message) | |
return fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, [] | |
# For some reason, zero topic modelling exports assigned topics as a np.array instead of a list. Converting it back here. | |
if isinstance(assigned_topics, np.ndarray): | |
assigned_topics = assigned_topics.tolist() | |
# Zero shot modelling is a model merge, which wipes the c_tf_idf part of the resulting model completely. To get hierarchical modelling to work, we need to recreate this part of the model with the CountVectorizer options used to create the initial model. Since with zero shot, we are merging two models that have exactly the same set of documents, the vocubulary should be the same, and so recreating the cf_tf_idf component in this way shouldn't be a problem. Discussion here, and below based on Maarten's suggested code: https://github.com/MaartenGr/BERTopic/issues/1700 | |
# Get document info | |
doc_dets = topic_model.get_document_info(docs) | |
documents_per_topic = doc_dets.groupby(['Topic'], as_index=False).agg({'Document': ' '.join}) | |
# Assign CountVectorizer to merged model | |
topic_model.vectorizer_model = vectoriser_model | |
# Re-calculate c-TF-IDF | |
c_tf_idf, _ = topic_model._c_tf_idf(documents_per_topic) | |
topic_model.c_tf_idf_ = c_tf_idf | |
### | |
# Check we have topics | |
if not assigned_topics: | |
return "No topics found.", output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model,[] | |
else: | |
print("Topic model created.") | |
# Tidy up topic label format a bit to have commas and spaces by default | |
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ") | |
topic_model.set_topic_labels(new_topic_labels) | |
# Replace current topic labels if new ones loaded in | |
if not custom_labels_df.empty: | |
#custom_label_list = list(custom_labels_df.iloc[:,0]) | |
custom_label_list = [label.replace("\n", "") for label in custom_labels_df.iloc[:,0]] | |
topic_model.set_topic_labels(custom_label_list) | |
print("Custom topics: ", topic_model.custom_labels_) | |
# Outputs | |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model) | |
# If you want to save your embedding files | |
if return_intermediate_files == "Yes": | |
print("Saving embeddings to file") | |
if low_resource_mode == "Yes": | |
embeddings_file_name = data_file_name_no_ext + '_' + 'tfidf_embeddings.npz' | |
else: | |
if embeddings_super_compress == "No": | |
embeddings_file_name = data_file_name_no_ext + '_' + 'large_embeddings.npz' | |
else: | |
embeddings_file_name = data_file_name_no_ext + '_' + 'large_embeddings_compress.npz' | |
np.savez_compressed(embeddings_file_name, embeddings_out) | |
output_list.append(embeddings_file_name) | |
all_toc = time.perf_counter() | |
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds." | |
print(time_out) | |
return output_text, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model, assigned_topics | |
def reduce_outliers(topic_model, docs, embeddings_out, data_file_name_no_ext, assigned_topics, vectoriser_model, save_topic_model, progress=gr.Progress(track_tqdm=True)): | |
progress(0, desc= "Preparing data") | |
output_list = [] | |
all_tic = time.perf_counter() | |
# This step not necessary? | |
#assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out) | |
if isinstance(assigned_topics, np.ndarray): | |
assigned_topics = assigned_topics.tolist() | |
# Reduce outliers if required, then update representation | |
progress(0.2, desc= "Reducing outliers") | |
print("Reducing outliers.") | |
# Calculate the c-TF-IDF representation for each outlier document and find the best matching c-TF-IDF topic representation using cosine similarity. | |
assigned_topics = topic_model.reduce_outliers(docs, assigned_topics, strategy="embeddings") | |
# Then, update the topics to the ones that considered the new data | |
progress(0.6, desc= "Updating original model") | |
topic_model.update_topics(docs, topics=assigned_topics, vectorizer_model = vectoriser_model) | |
# Tidy up topic label format a bit to have commas and spaces by default | |
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ") | |
topic_model.set_topic_labels(new_topic_labels) | |
print("Finished reducing outliers.") | |
#progress(0.7, desc= "Replacing topic names with LLMs if necessary") | |
#topic_dets = topic_model.get_topic_info() | |
# # Replace original labels with LLM labels | |
# if "LLM" in topic_model.get_topic_info().columns: | |
# llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()] | |
# topic_model.set_topic_labels(llm_labels) | |
# else: | |
# topic_model.set_topic_labels(list(topic_dets["Name"])) | |
# Outputs | |
progress(0.9, desc= "Saving to file") | |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model) | |
all_toc = time.perf_counter() | |
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds" | |
print(time_out) | |
return output_text, output_list, topic_model | |
def represent_topics(topic_model, docs, data_file_name_no_ext, low_resource_mode, save_topic_model, representation_type, vectoriser_model, progress=gr.Progress(track_tqdm=True)): | |
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag | |
output_list = [] | |
all_tic = time.perf_counter() | |
progress(0.1, desc= "Loading model and creating new representation") | |
representation_model = create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode) | |
progress(0.3, desc= "Updating existing topics") | |
topic_model.update_topics(docs, vectorizer_model=vectoriser_model, representation_model=representation_model) | |
topic_dets = topic_model.get_topic_info() | |
# Replace original labels with LLM labels | |
if representation_type == "LLM": | |
llm_labels = [label[0].split("\n")[0] for label in topic_dets["LLM"]] | |
topic_model.set_topic_labels(llm_labels) | |
label_list_file_name = data_file_name_no_ext + '_llm_topic_list_' + today_rev + '.csv' | |
llm_labels_df = pd.DataFrame(data={"Label":llm_labels}) | |
llm_labels_df.to_csv(label_list_file_name, index=None) | |
output_list.append(label_list_file_name) | |
else: | |
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ", aspect = representation_type) | |
topic_model.set_topic_labels(new_topic_labels) | |
# Outputs | |
progress(0.8, desc= "Saving outputs") | |
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model) | |
all_toc = time.perf_counter() | |
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds" | |
print(time_out) | |
return output_text, output_list, topic_model | |
def visualise_topics(topic_model, data, data_file_name_no_ext, low_resource_mode, embeddings_out, in_label, in_colnames, legend_label, sample_prop, visualisation_type_radio, random_seed, progress=gr.Progress(track_tqdm=True)): | |
progress(0, desc= "Preparing data for visualisation") | |
output_list = [] | |
vis_tic = time.perf_counter() | |
if not visualisation_type_radio: | |
return "Please choose a visualisation type above.", output_list, None, None | |
# Get topic labels | |
if in_label: | |
in_label_list_first = in_label[0] | |
else: | |
return "Label column not found. Please enter this above.", output_list, None, None | |
# Get docs | |
if in_colnames: | |
in_colnames_list_first = in_colnames[0] | |
else: | |
return "Label column not found. Please enter this on the data load tab.", output_list, None, None | |
docs = list(data[in_colnames_list_first].str.lower()) | |
# Make sure format of input series is good | |
data[in_label_list_first] = data[in_label_list_first].fillna('').astype(str) | |
label_list = list(data[in_label_list_first]) | |
topic_dets = topic_model.get_topic_info() | |
# Replace original labels with another representation if specified | |
if legend_label: | |
topic_dets = topic_model.get_topics(full=True) | |
if legend_label in topic_dets: | |
labels = [topic_dets[legend_label].values()] | |
labels = [str(v) for v in labels] | |
topic_model.set_topic_labels(labels) | |
# Pre-reduce embeddings for visualisation purposes | |
if low_resource_mode == "No": | |
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out) | |
else: | |
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out) | |
progress(0.5, desc= "Creating visualisation (this can take a while)") | |
# Visualise the topics: | |
print("Creating visualisation") | |
# "Topic document graph", "Hierarchical view" | |
if visualisation_type_radio == "Topic document graph": | |
topics_vis = visualize_documents_custom(topic_model, docs, hover_labels = label_list, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True, sample = sample_prop, width= 1200, height = 750) | |
topics_vis_name = data_file_name_no_ext + '_' + 'vis_topic_docs_' + today_rev + '.html' | |
topics_vis.write_html(topics_vis_name) | |
output_list.append(topics_vis_name) | |
topics_vis_2 = topic_model.visualize_heatmap(custom_labels=True, width= 1200, height = 1200) | |
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_heatmap_' + today_rev + '.html' | |
topics_vis_2.write_html(topics_vis_2_name) | |
output_list.append(topics_vis_2_name) | |
elif visualisation_type_radio == "Hierarchical view": | |
hierarchical_topics = hierarchical_topics_custom(topic_model, docs) | |
# Print topic tree - may get encoding errors, so doing try except | |
try: | |
tree = topic_model.get_topic_tree(hierarchical_topics, tight_layout = True) | |
tree_name = data_file_name_no_ext + '_' + 'vis_hierarchy_tree_' + today_rev + '.txt' | |
with open(tree_name, "w") as file: | |
# Write the string to the file | |
file.write(tree) | |
output_list.append(tree_name) | |
except Exception as error: | |
print("An exception occurred when making topic tree document, skipped:", error) | |
# Save new hierarchical topic model to file | |
hierarchical_topics_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topics_dist_' + today_rev + '.csv' | |
hierarchical_topics.to_csv(hierarchical_topics_name, index = None) | |
output_list.append(hierarchical_topics_name) | |
#try: | |
topics_vis, hierarchy_df, hierarchy_topic_names = visualize_hierarchical_documents_custom(topic_model, docs, label_list, hierarchical_topics, hide_annotations=True, reduced_embeddings=reduced_embeddings, sample = sample_prop, hide_document_hover= False, custom_labels=True, width= 1200, height = 750) | |
topics_vis_2 = visualize_hierarchy_custom(topic_model, hierarchical_topics=hierarchical_topics, width= 1200, height = 750) | |
# Write hierarchical topics levels to df | |
hierarchy_df_name = data_file_name_no_ext + '_' + 'hierarchy_topics_df_' + today_rev + '.csv' | |
hierarchy_df.to_csv(hierarchy_df_name, index = None) | |
output_list.append(hierarchy_df_name) | |
# Write hierarchical topics names to df | |
hierarchy_topic_names_name = data_file_name_no_ext + '_' + 'hierarchy_topics_names_' + today_rev + '.csv' | |
hierarchy_topic_names.to_csv(hierarchy_topic_names_name, index = None) | |
output_list.append(hierarchy_topic_names_name) | |
#except: | |
# error_message = "Visualisation preparation failed. Perhaps you need more topics to create the full hierarchy (more than 10)?" | |
# return error_message, output_list, None, None | |
topics_vis_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topic_doc_' + today_rev + '.html' | |
topics_vis.write_html(topics_vis_name) | |
output_list.append(topics_vis_name) | |
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_hierarchy_' + today_rev + '.html' | |
topics_vis_2.write_html(topics_vis_2_name) | |
output_list.append(topics_vis_2_name) | |
all_toc = time.perf_counter() | |
time_out = f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds" | |
print(time_out) | |
return time_out, output_list, topics_vis, topics_vis_2 | |
def save_as_pytorch_model(topic_model, data_file_name_no_ext , progress=gr.Progress(track_tqdm=True)): | |
if not topic_model: | |
return "No Pytorch model found.", None | |
progress(0, desc= "Saving topic model in Pytorch format") | |
output_list = [] | |
topic_model_save_name_folder = "output_model/" + data_file_name_no_ext + "_topics_" + today_rev# + ".safetensors" | |
topic_model_save_name_zip = topic_model_save_name_folder + ".zip" | |
# Clear folder before replacing files | |
delete_files_in_folder(topic_model_save_name_folder) | |
topic_model.save(topic_model_save_name_folder, serialization='pytorch', save_embedding_model=True, save_ctfidf=False) | |
# Zip file example | |
zip_folder(topic_model_save_name_folder, topic_model_save_name_zip) | |
output_list.append(topic_model_save_name_zip) | |
return "Model saved in Pytorch format.", output_list | |