Spaces:
Sleeping
Sleeping
File size: 10,143 Bytes
15d6d88 4afdd4d 5c708d4 97f24d6 391d7c7 26a1726 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 be0fea4 5c708d4 54bb316 be0fea4 391d7c7 97f24d6 391d7c7 97f24d6 94ffdb9 97f24d6 94ffdb9 ba36683 5c708d4 ba36683 5c708d4 28fb111 4afdd4d 28fb111 4afdd4d ba36683 4afdd4d ba36683 4afdd4d ba36683 4afdd4d 26a1726 28fb111 4afdd4d ba36683 b5d93b2 ba36683 b5d93b2 ba36683 b5d93b2 ba36683 b5d93b2 ba36683 b5d93b2 ba36683 7f31be9 ba36683 b5d93b2 4afdd4d ba36683 97f24d6 eec49a2 26a1726 eec49a2 4afdd4d 28fb111 4afdd4d 18011ec 4afdd4d 28e12ad 18011ec 28e12ad 18011ec 28e12ad 54bb316 28e12ad 18011ec 4afdd4d 6ef2bdd 26a1726 4afdd4d 26a1726 4afdd4d d9114d9 4afdd4d 26a1726 4afdd4d 18011ec 4afdd4d 97f24d6 8631f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline
from diffusers import FluxPipeline
from PIL import Image
import numpy as np
from huggingface_hub import login
# Hugging Face ํ ํฐ ์ค์ ๋ฐ ๋ก๊ทธ์ธ
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
print("Warning: HF_TOKEN not found in environment variables. You may encounter authentication issues.")
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
download_model()
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0) # GPU ์ฌ์ฉ ์ค์
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ๋ถ๋ถ ์์
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=hf_token # ํ ํฐ์ ์ฌ์ฉํ์ฌ ์ธ์ฆ
)
flux_pipe.enable_model_cpu_offload()
def generate_image_from_text(prompt, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
image = flux_pipe(
prompt,
height=576,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=generator
).images[0]
return image
@spaces.GPU(duration=600)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ํ๊ธ ์
๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
torch.cuda.empty_cache()
print('Start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size = 1
channels = model.model.diffusion_model.out_channels
frames = int(video_length * save_fps) # ๋น๋์ค ๊ธธ์ด์ ๋ฐ๋ฅธ ํ๋ ์ ์ ๊ณ์ฐ
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# ํ
์คํธ ์กฐ๊ฑด ์ค์
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor).unsqueeze(0) # bchw
z = get_latent_z(model, image_tensor_resized.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) # blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
# ์ถ๋ก ์คํ
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
@spaces.GPU(duration=300)
def infer_t2v(prompt, video_prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ์ด๋ฏธ์ง ์์ฑ
image = generate_image_from_text(prompt, seed)
# ์ด๋ฏธ์ง๋ฅผ numpy ๋ฐฐ์ด๋ก ๋ณํ
image_np = np.array(image)
# ๋น๋์ค ์์ฑ์ ์ํด ๊ธฐ์กด infer ํจ์ ํธ์ถ
return infer(image_np, video_prompt, steps, cfg_scale, eta, fs, seed, video_length)
i2v_examples = [
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
]
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
def generate_only_image(prompt, seed=123):
# ์ด๋ฏธ์ง ์์ฑ
image = generate_image_from_text(prompt, seed)
# PIL ์ด๋ฏธ์ง๋ก ๋ณํ ํ ๋ฐํ
return Image.fromarray(np.array(image))
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
gr.Markdown("kAI ๋ฌด๋น ์คํ๋์ค")
with gr.Tab(label='Image(+Text) Generation'):
with gr.Column():
with gr.Row():
with gr.Column():
img_input_text = gr.Text(label='Image Generation Prompt')
img_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
img_generate_btn = gr.Button("Generate Image")
with gr.Row():
img_output_image = gr.Image(label="Generated Image")
img_generate_btn.click(
inputs=[img_input_text, img_seed],
outputs=[img_output_image],
fn=generate_only_image
)
with gr.Tab(label='Image to Video Generation'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
with gr.Row():
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer
)
with gr.Tab(label='Text to Video Generation'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
t2v_video_prompt = gr.Text(label='Video Generation Prompt')
with gr.Row():
t2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
t2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0)
t2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5)
with gr.Row():
t2v_steps = gr.Slider(minimum=1, maximum=50, step=1, label="Sampling steps", value=30)
t2v_motion = gr.Slider(minimum=5, maximum=20, step=1, label="FPS", value=8)
with gr.Row():
t2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, label="Video Length (seconds)", value=2)
t2v_end_btn = gr.Button("Generate")
with gr.Row():
t2v_output_video = gr.Video(label="Generated Video", autoplay=True, show_share_button=True)
t2v_end_btn.click(
inputs=[t2v_input_text, t2v_video_prompt, t2v_steps, t2v_cfg_scale, t2v_eta, t2v_motion, t2v_seed, t2v_video_length],
outputs=[t2v_output_video],
fn=infer_t2v
)
dynamicrafter_iface.queue(max_size=12).launch(show_api=True) |