Spaces:
Sleeping
Sleeping
File size: 9,087 Bytes
15d6d88 4afdd4d 5c708d4 97f24d6 26a1726 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 4afdd4d 28fb111 be0fea4 5c708d4 be0fea4 97f24d6 e962f39 26a1726 5c708d4 28fb111 4afdd4d 28fb111 4afdd4d 26a1726 28fb111 4afdd4d b5d93b2 4afdd4d b5d93b2 4afdd4d b5d93b2 4afdd4d b5d93b2 7f31be9 b5d93b2 4afdd4d 97f24d6 eec49a2 26a1726 eec49a2 4afdd4d 28fb111 4afdd4d 5c708d4 28fb111 4afdd4d 6ef2bdd 26a1726 4afdd4d 26a1726 4afdd4d d9114d9 4afdd4d 26a1726 4afdd4d 97f24d6 8631f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import spaces
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline
from diffusers import FluxPipeline
from PIL import Image
import numpy as np
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
download_model()
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
flux_pipe.enable_model_cpu_offload()
def generate_image_from_text(prompt, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
image = flux_pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=generator
).images[0]
return image
@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ํ๊ธ ์
๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = int(video_length * save_fps) # ๋น๋์ค ๊ธธ์ด์ ๋ฐ๋ฅธ ํ๋ ์ ์ ๊ณ์ฐ
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #3,256,256
videos = image_tensor_resized.unsqueeze(0) # bchw
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
## b,samples,c,t,h,w
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
@spaces.GPU(duration=300)
def infer_t2v(prompt, video_prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
# ์ด๋ฏธ์ง ์์ฑ
image = generate_image_from_text(prompt, seed)
# ์ด๋ฏธ์ง๋ฅผ numpy ๋ฐฐ์ด๋ก ๋ณํ
image_np = np.array(image)
# ๋น๋์ค ์์ฑ์ ์ํด ๊ธฐ์กด infer ํจ์ ํธ์ถ
return infer(image_np, video_prompt, steps, cfg_scale, eta, fs, seed, video_length)
i2v_examples = [
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
]
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
gr.Markdown("์ด๋ฏธ์ง๋ก ์์ ์์ฑ ํ
์คํธ (ํ๊ธ ํ๋กฌํํธ ์ง์)")
with gr.Tab(label='ImageAnimation_576x1024'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
with gr.Row():
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer,
cache_examples=True,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
outputs=[i2v_output_video],
fn = infer
)
with gr.Tab(label='T2V'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
t2v_input_text = gr.Text(label='Image Generation Prompt')
with gr.Row():
t2v_video_prompt = gr.Text(label='Video Generation Prompt')
with gr.Row():
t2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
t2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0)
t2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5)
with gr.Row():
t2v_steps = gr.Slider(minimum=1, maximum=50, step=1, label="Sampling steps", value=30)
t2v_motion = gr.Slider(minimum=5, maximum=20, step=1, label="FPS", value=8)
with gr.Row():
t2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, label="Video Length (seconds)", value=2)
t2v_end_btn = gr.Button("Generate")
with gr.Row():
t2v_output_video = gr.Video(label="Generated Video", autoplay=True, show_share_button=True)
t2v_end_btn.click(
inputs=[t2v_input_text, t2v_video_prompt, t2v_steps, t2v_cfg_scale, t2v_eta, t2v_motion, t2v_seed, t2v_video_length],
outputs=[t2v_output_video],
fn=infer_t2v
)
dynamicrafter_iface.queue(max_size=12).launch(show_api=True) |