rag / app.py
seawolf2357's picture
Update app.py
4cc10ce verified
raw
history blame
3.1 kB
import os
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from accelerate import Accelerator # Accelerate๋ฅผ ๋ณ„๋„๋กœ ์ž„ํฌํŠธ
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import faiss
import gradio as gr
hf_api_key = os.getenv('HF_API_KEY') # ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ API ํ‚ค ๋กœ๋“œ
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
accelerator = Accelerator() # Accelerator ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=hf_api_key,
torch_dtype=torch.bfloat16,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
)
model = accelerator.prepare(model) # ๋ชจ๋ธ์„ Accelerator์— ์ค€๋น„์‹œํ‚ด
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings")
def search(query: str, k: int = 3):
embedded_query = ST.encode(query)
scores, retrieved_examples = data.get_nearest_examples("embeddings", embedded_query, k=k)
return scores, retrieved_examples
def format_prompt(prompt, retrieved_documents, k):
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k):
PROMPT += f"{retrieved_documents['text'][idx]}\n"
return PROMPT
def generate(formatted_prompt):
formatted_prompt = formatted_prompt[:2000] # GPU ๋ฉ”๋ชจ๋ฆฌ ์ œํ•œ์„ ๊ณ ๋ ค
messages = [{"role": "system", "content": "You are an assistant..."}, {"role": "user", "content": formatted_prompt}]
input_ids = tokenizer(messages, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.6,
top_p=0.9
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
return response
def rag_chatbot_interface(prompt: str, k: int = 2):
scores, retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
return generate(formatted_prompt)
SYS_PROMPT = "You are an assistant for answering questions. You are given the extracted parts of a long document and a question. Provide a conversational answer. If you don't know the answer, just say 'I do not know.' Don't make up an answer."
iface = gr.Interface(
fn=rag_chatbot_interface,
inputs=gr.inputs.Textbox(label="Enter your question"),
outputs=gr.outputs.Textbox(label="Answer"),
title="Retrieval-Augmented Generation Chatbot",
description="This chatbot uses a retrieval-augmented generation approach to provide more accurate answers. It first searches for relevant documents and then generates a response based on the prompt and the retrieved documents."
)
iface.launch()