Spaces:
Runtime error
Runtime error
File size: 3,100 Bytes
9918198 4cc10ce 456ec91 4cc10ce 9918198 1f97769 4cc10ce 883f7e7 75c1fd6 2d84b3b 4cc10ce 1b6e08f 2d84b3b 1b6e08f 4cc10ce 1b6e08f 4cc10ce 953debe 1b6e08f 953debe 1b6e08f 9918198 953debe 1b6e08f 953debe 1b6e08f 4cc10ce 1b6e08f 9918198 1b6e08f 9918198 1b6e08f 456ec91 9918198 4cc10ce 2829eb5 9918198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import os
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from accelerate import Accelerator # Accelerateλ₯Ό λ³λλ‘ μν¬νΈ
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import faiss
import gradio as gr
hf_api_key = os.getenv('HF_API_KEY') # νκ²½ λ³μμμ API ν€ λ‘λ
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
accelerator = Accelerator() # Accelerator μΈμ€ν΄μ€ μμ±
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=hf_api_key,
torch_dtype=torch.bfloat16,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
)
model = accelerator.prepare(model) # λͺ¨λΈμ Acceleratorμ μ€λΉμν΄
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings")
def search(query: str, k: int = 3):
embedded_query = ST.encode(query)
scores, retrieved_examples = data.get_nearest_examples("embeddings", embedded_query, k=k)
return scores, retrieved_examples
def format_prompt(prompt, retrieved_documents, k):
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k):
PROMPT += f"{retrieved_documents['text'][idx]}\n"
return PROMPT
def generate(formatted_prompt):
formatted_prompt = formatted_prompt[:2000] # GPU λ©λͺ¨λ¦¬ μ νμ κ³ λ €
messages = [{"role": "system", "content": "You are an assistant..."}, {"role": "user", "content": formatted_prompt}]
input_ids = tokenizer(messages, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.6,
top_p=0.9
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
return response
def rag_chatbot_interface(prompt: str, k: int = 2):
scores, retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
return generate(formatted_prompt)
SYS_PROMPT = "You are an assistant for answering questions. You are given the extracted parts of a long document and a question. Provide a conversational answer. If you don't know the answer, just say 'I do not know.' Don't make up an answer."
iface = gr.Interface(
fn=rag_chatbot_interface,
inputs=gr.inputs.Textbox(label="Enter your question"),
outputs=gr.outputs.Textbox(label="Answer"),
title="Retrieval-Augmented Generation Chatbot",
description="This chatbot uses a retrieval-augmented generation approach to provide more accurate answers. It first searches for relevant documents and then generates a response based on the prompt and the retrieved documents."
)
iface.launch()
|