semakoc's picture
segment database by language (#9)
daefd88 verified
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
import tempfile
import uuid
# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE
'''
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cred = credentials.Certificate("serviceAccountKey.json")
'''
# Deployed Initialization
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
lang = "ami"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"處理文件錯誤: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
return transcription, transcription
def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
try:
audio_metadata = {}
audio_file_url = None
# If an audio file is provided, upload it to Firebase Storage
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=44100)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
# Generate a unique identifier for the audio file
unique_id = str(uuid.uuid4())
destination_path = f"audio/{lang}/{unique_id}.wav"
# Create a blob and upload the file
blob = bucket.blob(destination_path)
blob.upload_from_filename(audio_file)
# Generate a signed download URL valid for 1 hour (adjust expiration as needed)
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
combined_data = {
'transcription_info': {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'language': lang,
},
'audio_data': {
'audio_metadata': audio_metadata,
'audio_file_url': audio_file_url,
},
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
},
'timestamp': datetime.now().isoformat(),
'model_name': MODEL_NAME
}
# Save data to a collection for that language
db.collection('amis_transcriptions').add(combined_data)
return "校正保存成功! (Correction saved successfully!)"
except Exception as e:
return f"保存失败: {e} (Error saving correction: {e})"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(switch):
"""Switch UI text between English and Traditional Chinese"""
if switch:
return (
"阿美語轉錄與修正系統",
"步驟 1:音訊上傳與轉錄",
"步驟 2:審閱與編輯轉錄",
"步驟 3:使用者資訊",
"步驟 4:儲存與下載",
"音訊輸入", "轉錄音訊",
"原始轉錄", "更正轉錄",
"年齡", "以阿美語為母語?",
"儲存更正", "儲存狀態",
"下載 ZIP 檔案"
)
else:
return (
"Amis ASR Transcription & Correction System",
"Step 1: Audio Upload & Transcription",
"Step 2: Review & Edit Transcription",
"Step 3: User Information",
"Step 4: Save & Download",
"Audio Input", "Transcribe Audio",
"Original Transcription", "Corrected Transcription",
"Age", "Native Amis Speaker?",
"Save Correction", "Save Status",
"Download ZIP File"
)
# Interface
with gr.Blocks() as demo:
lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)")
title = gr.Markdown("Amis ASR Transcription & Correction System")
step1 = gr.Markdown("Step 1: Audio Upload & Transcription")
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
step2 = gr.Markdown("Step 2: Review & Edit Transcription")
with gr.Row():
transcribe_button = gr.Button("Transcribe Audio")
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)
step3 = gr.Markdown("Step 3: User Information")
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Amis Speaker?", value=True)
step4 = gr.Markdown("Step 4: Save & Download")
with gr.Row():
save_button = gr.Button("Save Correction")
save_status = gr.Textbox(label="Save Status", interactive=False)
with gr.Row():
download_button = gr.Button("Download ZIP File")
download_output = gr.File()
lang_switch.change(
toggle_language,
inputs=lang_switch,
outputs=[title, step1, step2, step3, step4, audio_input, transcribe_button,
original_text, corrected_text, age_input, native_speaker_input,
save_button, save_status, download_button]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.launch()