i135e1fi414i41tqe / storage.py
serhan's picture
Upload 16 files
14e11d6
raw
history blame
5.95 kB
import os.path
from abc import ABC, abstractmethod
import faiss
import numpy as np
import pandas as pd
from pgvector.sqlalchemy import Vector
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import sessionmaker, declarative_base
from config import Config
Base = declarative_base()
class Storage(ABC):
"""Abstract Storage class."""
# factory method
@staticmethod
def create_storage(cfg: Config) -> 'Storage':
"""Create a storage object."""
if cfg.use_postgres:
return _PostgresStorage(cfg)
else:
return _IndexStorage(cfg)
@abstractmethod
def add_all(self, embeddings: list[tuple[str, list[float]]], name: str):
"""Add multiple embeddings."""
pass
@abstractmethod
def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
"""Get the text for the provided embedding."""
pass
@abstractmethod
def get_all_embeddings(self, name: str):
"""Get all embeddings."""
pass
@abstractmethod
def clear(self, name: str):
"""Clear the database."""
pass
@abstractmethod
def been_indexed(self, name: str) -> bool:
"""Check if the database has been indexed."""
pass
class _IndexStorage(Storage):
"""IndexStorage class."""
def __init__(self, cfg: Config):
"""Initialize the storage."""
self._cfg = cfg
def add_all(self, embeddings: list[tuple[str, list[float]]], name):
"""Add multiple embeddings."""
texts, index = self._load(name)
ids = np.array([len(texts) + i for i, _ in enumerate(embeddings)])
texts = pd.concat([texts, pd.DataFrame(
{'index': len(texts) + i, 'text': text} for i, (text, _) in enumerate(embeddings))])
array = np.array([emb for text, emb in embeddings])
index.add_with_ids(array, ids)
self._save(texts, index, name)
def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
"""Get the text for the provided embedding."""
texts, index = self._load(name)
_, indexs = index.search(np.array([embedding]), limit)
indexs = [i for i in indexs[0] if i >= 0]
return [f'paragraph {p}: {t}' for _, p, t in texts.iloc[indexs].values]
def get_all_embeddings(self, name: str):
texts, index = self._load(name)
texts = texts.text.tolist()
embeddings = index.reconstruct_n(0, len(texts))
return list(zip(texts, embeddings))
def clear(self, name: str):
"""Clear the database."""
self._delete(name)
def been_indexed(self, name: str) -> bool:
return os.path.exists(os.path.join(self._cfg.index_path, f'{name}.csv')) and os.path.exists(
os.path.join(self._cfg.index_path, f'{name}.bin'))
def _save(self, texts, index, name: str):
texts.to_csv(os.path.join(self._cfg.index_path, f'{name}.csv'))
faiss.write_index(index, os.path.join(self._cfg.index_path, f'{name}.bin'))
def _load(self, name: str):
if self.been_indexed(name):
texts = pd.read_csv(os.path.join(self._cfg.index_path, f'{name}.csv'))
index = faiss.read_index(os.path.join(self._cfg.index_path, f'{name}.bin'))
else:
texts = pd.DataFrame(columns=['index', 'text'])
# IDMap2 with Flat
index = faiss.index_factory(1536, "IDMap2,Flat", faiss.METRIC_INNER_PRODUCT)
return texts, index
def _delete(self, name: str):
try:
os.remove(os.path.join(self._cfg.index_path, f'{name}.csv'))
os.remove(os.path.join(self._cfg.index_path, f'{name}.bin'))
except FileNotFoundError:
pass
def singleton(cls):
instances = {}
def get_instance(cfg):
if cls not in instances:
instances[cls] = cls(cfg)
return instances[cls]
return get_instance
@singleton
class _PostgresStorage(Storage):
"""PostgresStorage class."""
def __init__(self, cfg: Config):
"""Initialize the storage."""
self._postgresql = cfg.postgres_url
self._engine = create_engine(self._postgresql)
Base.metadata.create_all(self._engine)
session = sessionmaker(bind=self._engine)
self._session = session()
def add_all(self, embeddings: list[tuple[str, list[float]]], name: str):
"""Add multiple embeddings."""
data = [self.EmbeddingEntity(text=text, embedding=embedding, name=name) for text, embedding in embeddings]
self._session.add_all(data)
self._session.commit()
def get_texts(self, embedding: list[float], name: str, limit=100) -> list[str]:
"""Get the text for the provided embedding."""
result = self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).order_by(
self.EmbeddingEntity.embedding.cosine_distance(embedding)).limit(limit).all()
return [f'paragraph {s.id}: {s.text}' for s in result]
def get_all_embeddings(self, name: str):
"""Get all embeddings."""
result = self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).all()
return [(s.text, s.embedding) for s in result]
def clear(self, name: str):
"""Clear the database."""
self._session.query(self.EmbeddingEntity).where(self.EmbeddingEntity.name == name).delete()
self._session.commit()
def been_indexed(self, name: str) -> bool:
return self._session.query(self.EmbeddingEntity).filter_by(name=name).first() is not None
def __del__(self):
"""Close the session."""
self._session.close()
class EmbeddingEntity(Base):
__tablename__ = 'embedding'
id = Column(Integer, primary_key=True)
name = Column(String)
text = Column(String)
embedding = Column(Vector(1536))