serhii-korobchenko's picture
Update app.py
02ac556 verified
raw
history blame
1.77 kB
from pathlib import Path
import torch
import gradio as gr
from torch import nn
LABELS = Path('class_names.txt').read_text().splitlines()
model = nn.Sequential(
nn.Conv2d(1, 32, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1152, 256),
nn.ReLU(),
nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model.eval()
def predict(im):
def list_shape(lst):
if not isinstance(lst, list):
return []
if not lst:
return [0]
shapes = [list_shape(sublist) for sublist in lst]
max_shape = max(shapes, key=len)
return [len(lst)] + [max(dimensions[i] if i < len(dimensions) else 0 for dimensions in shapes) for i in range(len(max_shape))]
print(list_shape(im))
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
with torch.no_grad():
out = model(x)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, 5)
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
interface = gr.Interface(
predict,
inputs="sketchpad",
outputs='label',
theme="huggingface",
title="Sketch Recognition",
description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!",
article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
live=True)
interface.launch(debug=True)