Spaces:
Sleeping
Sleeping
import torch | |
class M5(torch.nn.Module): | |
def __init__(self, num_classes=2): # Ensure it matches dataset labels (chainsaw/environment) | |
super(M5, self).__init__() | |
self.conv1 = torch.nn.Conv1d(in_channels=1, out_channels=32, kernel_size=80, stride=4) | |
self.bn1 = torch.nn.BatchNorm1d(32) | |
self.conv2 = torch.nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3) | |
self.bn2 = torch.nn.BatchNorm1d(64) | |
self.conv3 = torch.nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3) | |
self.bn3 = torch.nn.BatchNorm1d(128) | |
self.conv4 = torch.nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3) | |
self.bn4 = torch.nn.BatchNorm1d(256) | |
self.fc1 = torch.nn.Linear(256, num_classes) | |
def forward(self, x): | |
x = torch.nn.functional.relu(self.bn1(self.conv1(x))) | |
x = torch.nn.functional.max_pool1d(x, 4) | |
x = torch.nn.functional.relu(self.bn2(self.conv2(x))) | |
x = torch.nn.functional.max_pool1d(x, 4) | |
x = torch.nn.functional.relu(self.bn3(self.conv3(x))) | |
x = torch.nn.functional.max_pool1d(x, 4) | |
x = torch.nn.functional.relu(self.bn4(self.conv4(x))) | |
x = torch.nn.functional.max_pool1d(x, 4) | |
x = torch.mean(x, dim=2) | |
x = self.fc1(x) | |
return x | |
def load_model(model_path, num_classes=2): | |
""" | |
Load trained M5 model. | |
""" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = M5(num_classes=num_classes).to(device) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.eval() # Set model to evaluation mode | |
return model, device | |
if __name__ == "__main__": | |
model, device = load_model("quantized_teacher_m5_static.pth") | |
print("✅ Model successfully loaded!") | |