Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
#additional imports | |
from transformers import Trainer, TrainingArguments, DistilBertForSequenceClassification, DistilBertTokenizerFast | |
import logging | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased") | |
# Tokenize the datasets | |
def tokenize_function(examples): | |
return tokenizer(examples["quote"], padding="max_length", truncation=True) | |
train_dataset = dataset["train"].map(tokenize_function, batched=True) | |
test_dataset = dataset["test"].map(tokenize_function, batched=True) | |
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8) # Set num_labels for your classification task | |
training_args = TrainingArguments( | |
output_dir="./results", | |
eval_strategy="epoch", # Evaluation strategy (can be "steps" or "epoch") | |
per_device_train_batch_size=16, # Batch size for training | |
per_device_eval_batch_size=64, # Batch size for evaluation | |
num_train_epochs=3, # Number of training epochs | |
logging_dir="./logs", # Directory for logs | |
logging_steps=10, # How often to log | |
) | |
trainer = Trainer( | |
model=model, # The model to train | |
args=training_args, # The training arguments | |
train_dataset=train_dataset, # The training dataset | |
eval_dataset=test_dataset # The evaluation dataset | |
) | |
trainer.train() | |
predictions = trainer.evaluate() | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |