seronk's picture
training distillbert on data (#3)
2e75c99 verified
raw
history blame
4.67 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
#additional imports
from transformers import Trainer, TrainingArguments, DistilBertForSequenceClassification, DistilBertTokenizerFast
import logging
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
# Tokenize the datasets
def tokenize_function(examples):
return tokenizer(examples["quote"], padding="max_length", truncation=True)
train_dataset = dataset["train"].map(tokenize_function, batched=True)
test_dataset = dataset["test"].map(tokenize_function, batched=True)
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=8) # Set num_labels for your classification task
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch", # Evaluation strategy (can be "steps" or "epoch")
per_device_train_batch_size=16, # Batch size for training
per_device_eval_batch_size=64, # Batch size for evaluation
num_train_epochs=3, # Number of training epochs
logging_dir="./logs", # Directory for logs
logging_steps=10, # How often to log
)
trainer = Trainer(
model=model, # The model to train
args=training_args, # The training arguments
train_dataset=train_dataset, # The training dataset
eval_dataset=test_dataset # The evaluation dataset
)
trainer.train()
predictions = trainer.evaluate()
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results