Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from dataclasses import dataclass | |
from typing import List, Tuple | |
import torch | |
import torchaudio | |
from huggingface_hub import hf_hub_download | |
from models import Model, ModelArgs | |
from moshi.models import loaders | |
from tokenizers.processors import TemplateProcessing | |
from transformers import AutoTokenizer | |
from watermarking import load_watermarker, watermark | |
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" "))) | |
class Segment: | |
speaker: int | |
text: str | |
# (num_samples,), sample_rate = 24_000 | |
audio: torch.Tensor | |
def load_llama3_tokenizer(): | |
""" | |
https://github.com/huggingface/transformers/issues/22794#issuecomment-2092623992 | |
""" | |
tokenizer_name = "meta-llama/Llama-3.2-1B" | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
bos = tokenizer.bos_token | |
eos = tokenizer.eos_token | |
tokenizer._tokenizer.post_processor = TemplateProcessing( | |
single=f"{bos}:0 $A:0 {eos}:0", | |
pair=f"{bos}:0 $A:0 {eos}:0 {bos}:1 $B:1 {eos}:1", | |
special_tokens=[(f"{bos}", tokenizer.bos_token_id), (f"{eos}", tokenizer.eos_token_id)], | |
) | |
return tokenizer | |
class Generator: | |
def __init__( | |
self, | |
model: Model, | |
): | |
self._model = model | |
self._model.setup_caches(1) | |
self._text_tokenizer = load_llama3_tokenizer() | |
device = next(model.parameters()).device | |
mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME) | |
mimi = loaders.get_mimi(mimi_weight, device=device) | |
mimi.set_num_codebooks(32) | |
self._audio_tokenizer = mimi | |
self._watermarker = load_watermarker(device=device) | |
self.sample_rate = mimi.sample_rate | |
self.device = device | |
def _tokenize_text_segment(self, text: str, speaker: int) -> Tuple[torch.Tensor, torch.Tensor]: | |
frame_tokens = [] | |
frame_masks = [] | |
text_tokens = self._text_tokenizer.encode(f"[{speaker}]{text}") | |
text_frame = torch.zeros(len(text_tokens), 33).long() | |
text_frame_mask = torch.zeros(len(text_tokens), 33).bool() | |
text_frame[:, -1] = torch.tensor(text_tokens) | |
text_frame_mask[:, -1] = True | |
frame_tokens.append(text_frame.to(self.device)) | |
frame_masks.append(text_frame_mask.to(self.device)) | |
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0) | |
def _tokenize_audio(self, audio: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
frame_tokens = [] | |
frame_masks = [] | |
# (K, T) | |
audio = audio.to(self.device) | |
audio_tokens = self._audio_tokenizer.encode(audio.unsqueeze(0).unsqueeze(0))[0] | |
# add EOS frame | |
eos_frame = torch.zeros(audio_tokens.size(0), 1).to(self.device) | |
audio_tokens = torch.cat([audio_tokens, eos_frame], dim=1) | |
audio_frame = torch.zeros(audio_tokens.size(1), 33).long().to(self.device) | |
audio_frame_mask = torch.zeros(audio_tokens.size(1), 33).bool().to(self.device) | |
audio_frame[:, :-1] = audio_tokens.transpose(0, 1) | |
audio_frame_mask[:, :-1] = True | |
frame_tokens.append(audio_frame) | |
frame_masks.append(audio_frame_mask) | |
return torch.cat(frame_tokens, dim=0), torch.cat(frame_masks, dim=0) | |
def _tokenize_segment(self, segment: Segment) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Returns: | |
(seq_len, 33), (seq_len, 33) | |
""" | |
text_tokens, text_masks = self._tokenize_text_segment(segment.text, segment.speaker) | |
audio_tokens, audio_masks = self._tokenize_audio(segment.audio) | |
return torch.cat([text_tokens, audio_tokens], dim=0), torch.cat([text_masks, audio_masks], dim=0) | |
def generate( | |
self, | |
text: str, | |
speaker: int, | |
context: List[Segment], | |
max_audio_length_ms: float = 90_000, | |
temperature: float = 0.9, | |
topk: int = 50, | |
) -> torch.Tensor: | |
self._model.reset_caches() | |
max_audio_frames = int(max_audio_length_ms / 80) | |
tokens, tokens_mask = [], [] | |
for segment in context: | |
segment_tokens, segment_tokens_mask = self._tokenize_segment(segment) | |
tokens.append(segment_tokens) | |
tokens_mask.append(segment_tokens_mask) | |
gen_segment_tokens, gen_segment_tokens_mask = self._tokenize_text_segment(text, speaker) | |
tokens.append(gen_segment_tokens) | |
tokens_mask.append(gen_segment_tokens_mask) | |
prompt_tokens = torch.cat(tokens, dim=0).long().to(self.device) | |
prompt_tokens_mask = torch.cat(tokens_mask, dim=0).bool().to(self.device) | |
samples = [] | |
curr_tokens = prompt_tokens.unsqueeze(0) | |
curr_tokens_mask = prompt_tokens_mask.unsqueeze(0) | |
curr_pos = torch.arange(0, prompt_tokens.size(0)).unsqueeze(0).long().to(self.device) | |
max_seq_len = 2048 - max_audio_frames | |
if curr_tokens.size(1) >= max_seq_len: | |
raise ValueError(f"Inputs too long, must be below max_seq_len - max_audio_frames: {max_seq_len}") | |
for _ in range(max_audio_frames): | |
sample = self._model.generate_frame(curr_tokens, curr_tokens_mask, curr_pos, temperature, topk) | |
if torch.all(sample == 0): | |
break # eos | |
samples.append(sample) | |
curr_tokens = torch.cat([sample, torch.zeros(1, 1).long().to(self.device)], dim=1).unsqueeze(1) | |
curr_tokens_mask = torch.cat( | |
[torch.ones_like(sample).bool(), torch.zeros(1, 1).bool().to(self.device)], dim=1 | |
).unsqueeze(1) | |
curr_pos = curr_pos[:, -1:] + 1 | |
audio = self._audio_tokenizer.decode(torch.stack(samples).permute(1, 2, 0)).squeeze(0).squeeze(0) | |
# This applies an imperceptible watermark to identify audio as AI-generated. | |
# Watermarking ensures transparency, dissuades misuse, and enables traceability. | |
# Please be a responsible AI citizen and keep the watermarking in place. | |
# If using CSM 1B in another application, use your own private key and keep it secret. | |
audio, wm_sample_rate = watermark(self._watermarker, audio, self.sample_rate, CSM_1B_HF_WATERMARK) | |
audio = torchaudio.functional.resample(audio, orig_freq=wm_sample_rate, new_freq=self.sample_rate) | |
return audio | |
def load_csm_1b(ckpt_path: str = "ckpt.pt", device: str = "cuda") -> Generator: | |
model_args = ModelArgs( | |
backbone_flavor="llama-1B", | |
decoder_flavor="llama-100M", | |
text_vocab_size=128256, | |
audio_vocab_size=2051, | |
audio_num_codebooks=32, | |
) | |
model = Model(model_args).to(device=device, dtype=torch.bfloat16) | |
state_dict = torch.load(ckpt_path) | |
model.load_state_dict(state_dict) | |
generator = Generator(model) | |
return generator | |