Spaces:
Sleeping
Sleeping
File size: 4,532 Bytes
2315e7a 1d44b76 6fb7683 93a0f5c 9afaf17 2315e7a 6fb7683 9afaf17 2315e7a 401e8b9 2315e7a 401e8b9 93a0f5c 2315e7a bc2853c 2315e7a bc2853c 2315e7a bc2853c 2315e7a 6fb7683 2315e7a 4cd768f 2315e7a 93a0f5c 2315e7a 93a0f5c 1d44b76 2315e7a bc2853c 2315e7a 69e3818 2315e7a 4cd768f 2315e7a 6fb7683 69e3818 6fb7683 69e3818 6fb7683 69e3818 6fb7683 69e3818 6fb7683 2315e7a 6fb7683 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# components/task_operations.py
import sqlite3
import pandas as pd
from datetime import datetime
import streamlit as st
class TaskManager:
DB_FILE = "tasks.db"
CATEGORIES = ['Learning', 'Gym', 'Personal', 'Family', 'Work', 'Prayer']
def __init__(self):
self.conn = sqlite3.connect(self.DB_FILE)
self.create_table()
def create_table(self):
query = """
CREATE TABLE IF NOT EXISTS tasks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
task_name TEXT,
task_time TEXT,
task_duration_hours INTEGER,
task_duration_minutes INTEGER,
category TEXT
);
"""
self.conn.execute(query)
self.conn.commit()
def load_tasks(self):
query = "SELECT * FROM tasks;"
df = pd.read_sql_query(query, self.conn)
# Debug: Show the columns of the DataFrame immediately after loading
print("Loaded columns before processing:", df.columns.tolist())
if not df.empty:
# Ensure 'Task Time' is in datetime format and id is an integer
df['Task Time'] = pd.to_datetime(df['task_time']) # Convert task_time to datetime
df['id'] = df['id'].astype(int) # Ensure id is an integer
df = df.rename(columns={
'task_name': 'Task Name',
'task_time': 'Task Time',
'task_duration_hours': 'Task Duration (hours)',
'task_duration_minutes': 'Task Duration (minutes)',
'category': 'Category',
'id': 'Task ID' # Rename id to 'Task ID'
})
# Debug: Show the columns after renaming
print("Loaded columns after processing:", df.columns.tolist())
return df.to_dict(orient='records')
else:
return []
def save_task(self, task):
query = """
INSERT INTO tasks (task_name, task_time, task_duration_hours, task_duration_minutes, category)
VALUES (?, ?, ?, ?, ?);
"""
self.conn.execute(query, (task['Task Name'], task['Task Time'], task['Task Duration (hours)'],
task['Task Duration (minutes)'], task['Category']))
self.conn.commit()
def add_task(self, task_name, task_time, task_duration_hours, task_duration_minutes, task_category):
task_time_full = datetime.combine(datetime.today(), task_time)
task_entry = {
"Task Name": task_name,
"Task Time": task_time_full,
"Task Duration (hours)": int(task_duration_hours),
"Task Duration (minutes)": int(task_duration_minutes),
"Category": task_category
}
self.save_task(task_entry)
st.session_state.tasks.append(task_entry)
def delete_task_by_id(self, task_id):
query = "DELETE FROM tasks WHERE id = ?;"
self.conn.execute(query, (task_id,))
self.conn.commit()
return True
def update_task(self, task_id, task_name, task_time, task_duration_hours, task_duration_minutes, task_category):
task_time_full = datetime.combine(datetime.today(), task_time)
query = """
UPDATE tasks
SET task_name = ?, task_time = ?, task_duration_hours = ?, task_duration_minutes = ?, category = ?
WHERE id = ?;
"""
self.conn.execute(query, (task_name, task_time_full, task_duration_hours, task_duration_minutes, task_category, task_id))
self.conn.commit()
return True
def generate_report(self, timeframe):
df = pd.DataFrame(self.load_tasks())
if df.empty:
return pd.DataFrame()
df['Task Time'] = pd.to_datetime(df['Task Time'])
if timeframe == 'daily':
report = df[df['Task Time'].dt.date == pd.Timestamp.today().date()]
elif timeframe == 'weekly':
week_start = pd.Timestamp.today() - pd.DateOffset(days=pd.Timestamp.today().dayofweek)
report = df[(df['Task Time'] >= week_start) & (df['Task Time'] < pd.Timestamp.today() + pd.DateOffset(days=1))]
elif timeframe == 'monthly':
report = df[df['Task Time'].dt.month == pd.Timestamp.today().month]
elif timeframe == 'yearly':
report = df[df['Task Time'].dt.year == pd.Timestamp.today().year]
else:
report = pd.DataFrame()
report['Total Duration'] = report['Task Duration (hours)'] + report['Task Duration (minutes)'] / 60.0
return report
|