Spaces:
Sleeping
Sleeping
# Copyright 2024 The YourMT3 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Please see the details in the LICENSE file. | |
"""audio.py""" | |
import os | |
import subprocess | |
import numpy as np | |
import wave | |
import math | |
from typing import Tuple, List | |
from numpy.lib.stride_tricks import as_strided | |
def load_audio_file(filename: str, | |
seg_start_sec: float = 0., | |
seg_length_sec: float = 0., | |
fs: int = 16000, | |
dtype: np.dtype = np.float64) -> np.ndarray: | |
"""Load audio file and return the segment of audio.""" | |
start_frame_idx = int(np.floor(seg_start_sec * fs)) | |
seg_length_frame = int(np.floor(seg_length_sec * fs)) | |
end_frame_idx = start_frame_idx + seg_length_frame | |
file_ext = filename[-3:] | |
if file_ext == 'wav': | |
with wave.open(filename, 'r') as f: | |
f.setpos(start_frame_idx) | |
if seg_length_sec == 0: | |
x = f.readframes(f.getnframes()) | |
else: | |
x = f.readframes(end_frame_idx - start_frame_idx) | |
if dtype == np.float64: | |
x = np.frombuffer(x, dtype=np.int16) / 2**15 | |
elif dtype == np.float32: | |
x = np.frombuffer(x, dtype=np.int16) / 2**15 | |
x = x.astype(np.float32) | |
elif dtype == np.int16: | |
x = np.frombuffer(x, dtype=np.int16) | |
elif dtype is None: | |
pass | |
else: | |
raise NotImplementedError(f"Unsupported dtype: {dtype}") | |
else: | |
raise NotImplementedError(f"Unsupported file extension: {file_ext}") | |
return x | |
def get_audio_file_info(filename: str) -> Tuple[int, int, int]: | |
"""Get audio file info. | |
Args: | |
filename: path to the audio file | |
Returns: | |
fs: sampling rate | |
n_frames: number of frames | |
n_channels: number of channels | |
""" | |
file_ext = filename[-3:] | |
if file_ext == 'wav': | |
with wave.open(filename, 'r') as f: | |
fs = f.getframerate() | |
n_frames = f.getnframes() | |
n_channels = f.getnchannels() | |
else: | |
raise NotImplementedError(f"Unsupported file extension: {file_ext}") | |
return fs, n_frames, n_channels | |
def get_segments_from_numpy_array(arr: np.ndarray, | |
slice_length: int, | |
start_frame_indices: List[int], | |
dtype: np.dtype = np.float32) -> np.ndarray: | |
"""Get random audio slices from numpy array. | |
Args: | |
arr: numpy array of shape (c, n_frames) | |
slice_length: length of the slice | |
start_frame_indices: list of m start frames | |
Returns: | |
slices: numpy array of shape (m, c, slice_length) | |
""" | |
c, max_length = arr.shape | |
max_length = arr.shape[1] | |
m = len(start_frame_indices) | |
slices = np.zeros((m, c, slice_length), dtype=dtype) | |
for i, start_frame in enumerate(start_frame_indices): | |
end_frame = start_frame + slice_length | |
assert (end_frame <= max_length - 1) | |
slices[i, :, :] = arr[:, start_frame:end_frame].astype(dtype) | |
return slices | |
def slice_padded_array(x: np.ndarray, slice_length: int, slice_hop: int, pad: bool = True) -> np.ndarray: | |
""" | |
Slices the input array into overlapping windows based on the given slice length and slice hop. | |
Args: | |
x: The input array to be sliced. | |
slice_length: The length of each slice. | |
slice_hop: The number of elements between the start of each slice. | |
pad: If True, the last slice will be padded with zeros if necessary. | |
Returns: | |
A numpy array with shape (n_slices, slice_length) containing the slices. | |
""" | |
num_slices = (x.shape[1] - slice_length) // slice_hop + 1 | |
remaining = (x.shape[1] - slice_length) % slice_hop | |
if pad and remaining > 0: | |
padding = np.zeros((x.shape[0], slice_length - remaining)) | |
x = np.hstack((x, padding)) | |
num_slices += 1 | |
shape: Tuple[int, int] = (num_slices, slice_length) | |
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1]) | |
sliced_x = as_strided(x, shape=shape, strides=strides) | |
return sliced_x | |
def slice_padded_array_for_subbatch(x: np.ndarray, | |
slice_length: int, | |
slice_hop: int, | |
pad: bool = True, | |
sub_batch_size: int = 1, | |
dtype: np.dtype = np.float32) -> np.ndarray: | |
""" | |
Slices the input array into overlapping windows based on the given slice length and slice hop, | |
and pads it to make the output divisible by the sub_batch_size. | |
NOTE: This method is currently not used. | |
Args: | |
x: The input array to be sliced, such as (1, n_frames). | |
slice_length: The length of each slice. | |
slice_hop: The number of elements between the start of each slice. | |
pad: If True, the last slice will be padded with zeros if necessary. | |
sub_batch_size: The desired number of slices to be divisible by. | |
Returns: | |
A numpy array with shape (n_slices, slice_length) containing the slices. | |
""" | |
num_slices = (x.shape[1] - slice_length) // slice_hop + 1 | |
remaining = (x.shape[1] - slice_length) % slice_hop | |
if pad and remaining > 0: | |
padding = np.zeros((x.shape[0], slice_length - remaining), dtype=dtype) | |
x = np.hstack((x, padding)) | |
num_slices += 1 | |
# Adjust the padding to make n_slices divisible by sub_batch_size | |
if pad and num_slices % sub_batch_size != 0: | |
additional_padding_needed = (sub_batch_size - (num_slices % sub_batch_size)) * slice_hop | |
additional_padding = np.zeros((x.shape[0], additional_padding_needed), dtype=dtype) | |
x = np.hstack((x, additional_padding)) | |
num_slices += (sub_batch_size - (num_slices % sub_batch_size)) | |
shape: Tuple[int, int] = (num_slices, slice_length) | |
strides: Tuple[int, int] = (slice_hop * x.strides[1], x.strides[1]) | |
sliced_x = as_strided(x, shape=shape, strides=strides) | |
return sliced_x | |
def pitch_shift_audio(src_audio_file: os.PathLike, | |
min_pitch_shift: int = -5, | |
max_pitch_shift: int = 6, | |
random_microshift_range: tuple[int, int] = (-10, 11)): | |
""" | |
Pitch shift audio file using the Sox command-line tool. | |
NOTE: This method is currently not used. Previously, we used this for | |
offline augmentation for GuitarSet. | |
Args: | |
src_audio_file: Path to the input audio file. | |
min_pitch_shift: Minimum pitch shift in semitones. | |
max_pitch_shift: Maximum pitch shift in semitones. | |
random_microshift_range: Range of random microshifts to apply in tenths of a semitone. | |
Returns: | |
None | |
Raises: | |
CalledProcessError: If the Sox command fails to execute. | |
""" | |
# files | |
src_audio_dir = os.path.dirname(src_audio_file) | |
src_audio_filename = os.path.basename(src_audio_file).split('.')[0] | |
# load source audio | |
try: | |
audio = load_audio_file(src_audio_file, dtype=np.int16) | |
audio = audio / 2**15 | |
audio = audio.astype(np.float16) | |
except Exception as e: | |
print(f"Failed to load audio file: {src_audio_file}. {e}") | |
return | |
# pitch shift audio for each semitone in the range | |
for pitch_shift in range(min_pitch_shift, max_pitch_shift): | |
if pitch_shift == 0: | |
continue | |
# pitch shift audio by sox | |
dst_audio_file = os.path.join(src_audio_dir, f'{src_audio_filename}_pshift{pitch_shift}.wav') | |
shift_semitone = 100 * pitch_shift + np.random.randint(*random_microshift_range) | |
# build Sox command | |
command = ['sox', src_audio_file, '-r', '16000', dst_audio_file, 'pitch', str(shift_semitone)] | |
try: | |
# execute Sox command and check for errors | |
subprocess.run(command, check=True) | |
print(f"Created {dst_audio_file}") | |
except subprocess.CalledProcessError as e: | |
print(f"Failed to pitch shift audio file: {src_audio_file}, pitch_shift: {pitch_shift}. {e}") | |
def write_wav_file(filename: str, x: np.ndarray, samplerate: int = 16000) -> None: | |
""" | |
Write a mono PCM WAV file from a NumPy array of audio samples. | |
Args: | |
filename (str): The name of the WAV file to be created. | |
x (np.ndarray): A 1D NumPy array containing the audio samples to be written to the WAV file. | |
The audio samples should be in the range [-1, 1]. | |
samplerate (int): The sample rate (in Hz) of the audio samples. | |
Returns: | |
None | |
""" | |
# Set the WAV file parameters | |
nchannels = 1 # Mono | |
sampwidth = 2 # 16-bit | |
framerate = samplerate | |
nframes = len(x) | |
# Scale the audio samples to the range [-32767, 32767] | |
x_scaled = np.array(x * 32767, dtype=np.int16) | |
# Set the buffer size for writing the WAV file | |
BUFFER_SIZE = 1024 | |
# Open the WAV file for writing | |
with wave.open(filename, "wb") as wav_file: | |
# Set the WAV file parameters | |
wav_file.setparams((nchannels, sampwidth, framerate, nframes, "NONE", "NONE")) | |
# Write the audio samples to the file in chunks | |
for i in range(0, len(x_scaled), BUFFER_SIZE): | |
# Get the next chunk of audio samples | |
chunk = x_scaled[i:i + BUFFER_SIZE] | |
# Convert the chunk of audio samples to a byte string and write it to the WAV file | |
wav_file.writeframes(chunk.tobytes()) | |
# Close the WAV file | |
wav_file.close() | |
def guess_onset_offset_by_amp_envelope(x, fs=16000, onset_threshold=0.05, offset_threshold=0.02, frame_size=256): | |
""" Guess onset/offset from audio signal x """ | |
amp_env = [] | |
num_frames = math.floor(len(x) / frame_size) | |
for t in range(num_frames): | |
lower = t * frame_size | |
upper = (t + 1) * frame_size - 1 | |
# Find maximum of each frame and add it to our array | |
amp_env.append(np.max(x[lower:upper])) | |
amp_env = np.array(amp_env) | |
# Find the first index where the amplitude envelope is greater than the threshold | |
onset = np.where(amp_env > onset_threshold)[0][0] * frame_size | |
offset = (len(amp_env) - 1 - np.where(amp_env[::-1] > offset_threshold)[0][0]) * frame_size | |
return onset, offset, amp_env | |
# from pydub import AudioSegment | |
# def convert_flac_to_wav(input_path, output_path): | |
# # Load FLAC file using Pydub | |
# sound = AudioSegment.from_file(input_path, format="flac") | |
# # Set the parameters for the output WAV file | |
# channels = 1 # mono | |
# sample_width = 2 # 16-bit | |
# frame_rate = 16000 | |
# # Convert the input sound to the specified format | |
# sound = sound.set_frame_rate(frame_rate) | |
# sound = sound.set_channels(channels) | |
# sound = sound.set_sample_width(sample_width) | |
# # Save the output WAV file to the specified path | |
# sound.export(output_path, format="wav") | |