shorecode commited on
Commit
4cd347d
·
verified ·
1 Parent(s): 7e55f18

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -42
app.py CHANGED
@@ -4,17 +4,40 @@ from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelFor
4
  from transformers import DataCollatorForSeq2Seq
5
  from datasets import load_dataset, concatenate_datasets, load_from_disk
6
  import traceback
7
-
 
 
8
 
9
  import os
 
 
10
 
 
11
 
12
- @spaces.GPU
13
  def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
14
  try:
15
- #login(api_key.strip())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  # Load the model and tokenizer
17
- model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2)
 
 
18
 
19
 
20
  # Set training arguments
@@ -42,48 +65,66 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
42
  save_total_limit=3,
43
  )
44
  # Check if a checkpoint exists and load it
 
 
 
 
45
  max_length = 128
46
- # Load the dataset
47
- dataset = load_dataset(dataset_name.strip())
48
- tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
49
- # Tokenize the dataset
50
- def tokenize_function(examples):
51
 
52
- # Assuming 'text' is the input and 'target' is the expected output
53
- model_inputs = tokenizer(
54
- examples['text'],
55
- max_length=max_length, # Set to None for dynamic padding
56
- padding=True, # Disable padding here, we will handle it later
57
- truncation=True,
58
- )
59
-
60
- # Setup the decoder input IDs (shifted right)
61
- labels = tokenizer(
62
- examples['target'],
63
- max_length=max_length, # Set to None for dynamic padding
64
- padding=True, # Disable padding here, we will handle it later
65
- truncation=True,
66
- text_target=examples['target'] # Use text_target for target text
67
- )
68
-
69
- # Add labels to the model inputs
70
- model_inputs["labels"] = labels["input_ids"]
71
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
- tokenized_datasets = dataset.map(tokenize_function, batched=True)
 
 
 
74
 
75
- tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
76
- tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
77
-
78
- # Create Trainer
79
- trainer = Trainer(
80
- model=model,
81
- args=training_args,
82
- train_dataset=tokenized_datasets['train'],
83
- eval_dataset=tokenized_datasets['test'],
84
- compute_metrics=compute_metrics,
85
- #callbacks=[LoggingCallback()],
86
- )
87
 
88
  # Fine-tune the model
89
  trainer.train()
@@ -103,6 +144,7 @@ def predict(text):
103
  '''
104
  # Create Gradio interface
105
  try:
 
106
  iface = gr.Interface(
107
  fn=fine_tune_model,
108
  inputs=[
 
4
  from transformers import DataCollatorForSeq2Seq
5
  from datasets import load_dataset, concatenate_datasets, load_from_disk
6
  import traceback
7
+ from sklearn.metrics import accuracy_score
8
+ import numpy as np
9
+ import torch
10
 
11
  import os
12
+ from huggingface_hub import login
13
+ from peft import get_peft_model, LoraConfig
14
 
15
+ #os.environ['HF_HOME'] = '/data/.huggingface'
16
 
17
+ @spaces.GPU(duration=120)
18
  def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
19
  try:
20
+ torch.cuda.empty_cache()
21
+ def compute_metrics(eval_pred):
22
+ logits, labels = eval_pred
23
+ predictions = np.argmax(logits, axis=1)
24
+ accuracy = accuracy_score(labels, predictions)
25
+ return {
26
+ 'eval_accuracy': accuracy,
27
+ 'eval_loss': eval_pred.loss, # If you want to include loss as well
28
+ }
29
+ login(api_key.strip())
30
+ lora_config = LoraConfig(
31
+ r=16, # Rank of the low-rank adaptation
32
+ lora_alpha=32, # Scaling factor
33
+ lora_dropout=0.1, # Dropout for LoRA layers
34
+ bias="none" # Bias handling
35
+ )
36
+
37
  # Load the model and tokenizer
38
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2, force_download=True)
39
+ model.gradient_checkpointing_enable()
40
+ #model = get_peft_model(model, lora_config)
41
 
42
 
43
  # Set training arguments
 
65
  save_total_limit=3,
66
  )
67
  # Check if a checkpoint exists and load it
68
+ if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
69
+ print("Loading model from checkpoint...")
70
+ model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
71
+
72
  max_length = 128
73
+ try:
74
+ tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
75
+ tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
 
 
76
 
77
+ # Create Trainer
78
+ trainer = Trainer(
79
+ model=model,
80
+ args=training_args,
81
+ train_dataset=tokenized_train_dataset,
82
+ eval_dataset=tokenized_test_dataset,
83
+ compute_metrics=compute_metrics,
84
+ #callbacks=[LoggingCallback()],
85
+ )
86
+ except:
87
+ # Load the dataset
88
+ dataset = load_dataset(dataset_name.strip())
89
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
90
+ # Tokenize the dataset
91
+ def tokenize_function(examples):
92
+
93
+ # Assuming 'text' is the input and 'target' is the expected output
94
+ model_inputs = tokenizer(
95
+ examples['text'],
96
+ max_length=max_length, # Set to None for dynamic padding
97
+ padding=True, # Disable padding here, we will handle it later
98
+ truncation=True,
99
+ )
100
+
101
+ # Setup the decoder input IDs (shifted right)
102
+ labels = tokenizer(
103
+ examples['target'],
104
+ max_length=max_length, # Set to None for dynamic padding
105
+ padding=True, # Disable padding here, we will handle it later
106
+ truncation=True,
107
+ text_target=examples['target'] # Use text_target for target text
108
+ )
109
+
110
+ # Add labels to the model inputs
111
+ model_inputs["labels"] = labels["input_ids"]
112
+ return model_inputs
113
 
114
+ tokenized_datasets = dataset.map(tokenize_function, batched=True)
115
+
116
+ tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
117
+ tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
118
 
119
+ # Create Trainer
120
+ trainer = Trainer(
121
+ model=model,
122
+ args=training_args,
123
+ train_dataset=tokenized_datasets['train'],
124
+ eval_dataset=tokenized_datasets['test'],
125
+ compute_metrics=compute_metrics,
126
+ #callbacks=[LoggingCallback()],
127
+ )
 
 
 
128
 
129
  # Fine-tune the model
130
  trainer.train()
 
144
  '''
145
  # Create Gradio interface
146
  try:
147
+ model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
148
  iface = gr.Interface(
149
  fn=fine_tune_model,
150
  inputs=[