Upload app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from datasets import load_dataset, concatenate_datasets, load_from_disk
|
|
6 |
import traceback
|
7 |
from sklearn.metrics import accuracy_score
|
8 |
import numpy as np
|
9 |
-
import torch
|
10 |
|
11 |
import os
|
12 |
from huggingface_hub import login
|
@@ -27,7 +26,6 @@ model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_la
|
|
27 |
@spaces.GPU(duration=120)
|
28 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
29 |
try:
|
30 |
-
torch.cuda.empty_cache()
|
31 |
def compute_metrics(eval_pred):
|
32 |
logits, labels = eval_pred
|
33 |
predictions = np.argmax(logits, axis=1)
|
@@ -68,9 +66,9 @@ def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size
|
|
68 |
save_total_limit=3,
|
69 |
)
|
70 |
# Check if a checkpoint exists and load it
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
max_length = 128
|
76 |
try:
|
|
|
6 |
import traceback
|
7 |
from sklearn.metrics import accuracy_score
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
import os
|
11 |
from huggingface_hub import login
|
|
|
26 |
@spaces.GPU(duration=120)
|
27 |
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
28 |
try:
|
|
|
29 |
def compute_metrics(eval_pred):
|
30 |
logits, labels = eval_pred
|
31 |
predictions = np.argmax(logits, axis=1)
|
|
|
66 |
save_total_limit=3,
|
67 |
)
|
68 |
# Check if a checkpoint exists and load it
|
69 |
+
# if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
|
70 |
+
# print("Loading model from checkpoint...")
|
71 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
|
72 |
|
73 |
max_length = 128
|
74 |
try:
|