File size: 10,948 Bytes
f8b17b0
d010dfc
 
 
f8b17b0
 
287c910
422ce01
f8b17b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d010dfc
 
 
f8b17b0
 
 
 
 
d010dfc
 
 
 
 
 
 
f8b17b0
 
 
 
 
 
d010dfc
 
 
 
 
f8b17b0
 
 
 
 
 
d010dfc
 
 
 
 
 
 
 
 
12fb4e7
 
 
af64cf3
d010dfc
c526f0f
d010dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b17b0
d010dfc
 
f8b17b0
d010dfc
 
f8b17b0
 
d010dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b17b0
 
 
 
 
 
 
 
 
d010dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b17b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d010dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderKL
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'


def convert_safetensors_to_bin(pipeline, state_dict, alpha = 0.4):
    LORA_PREFIX_UNET = 'lora_unet'
    LORA_PREFIX_TEXT_ENCODER = 'lora_te'

    visited = []

    # directly update weight in diffusers model
    for key in state_dict:
        # it is suggested to print out the key, it usually will be something like below
        # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

        # as we have set the alpha beforehand, so just skip
        if '.alpha' in key or key in visited:
            continue

        if 'text' in key:
            layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER + '_')[-1].split('_')
            curr_layer = pipeline.text_encoder
        else:
            layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET + '_')[-1].split('_')
            curr_layer = pipeline.unet

        # find the target layer
        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += '_' + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        # org_forward(x) + lora_up(lora_down(x)) * multiplier
        pair_keys = []
        if 'lora_down' in key:
            pair_keys.append(key.replace('lora_down', 'lora_up'))
            pair_keys.append(key)
        else:
            pair_keys.append(key)
            pair_keys.append(key.replace('lora_up', 'lora_down'))

        # update weight
        if len(state_dict[pair_keys[0]].shape) == 4:
            weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
            weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
        else:
            weight_up = state_dict[pair_keys[0]].to(torch.float32)
            weight_down = state_dict[pair_keys[1]].to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)

        # update visited list
        for item in pair_keys:
            visited.append(item)

    return pipeline


model_id = 'andite/anything-v4.0'
prefix = ''
lora_path = hf_hub_download(
    "showee/showee-lora-v1.0", "showee-any4.0.safetensors"
)
vae_path = "./anything-v4.0-vae/diffusion_pytorch_model.bin"

scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")

pipe = StableDiffusionPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler)

pipe.vae.load_state_dict(torch.load(vae_path))

state_dict = load_file(lora_path)
pipe = convert_safetensors_to_bin(pipe, state_dict, 0.3)


pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler)

pipe_i2i.vae.load_state_dict(torch.load(vae_path))

state_dict_i2i = load_file(lora_path)
pipe_i2i = convert_safetensors_to_bin(pipe, state_dict_i2i, 0.3)


if torch.cuda.is_available():
  pipe = pipe.to("cuda")
  pipe_i2i = pipe_i2i.to("cuda")

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False):
  if torch.cuda.is_available():
    generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
  else:
    generator = torch.Generator().manual_seed(seed) if seed != 0 else None
  prompt = f"{prefix} {prompt}" if auto_prefix else prompt
    
  try:
    if img is not None:
      return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
    else:
      return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
  except Exception as e:
    return None, error_str(e)

def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):

    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
    
    return result.images[0]

def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe_i2i(
        prompt,
        negative_prompt = neg_prompt,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
        
    return result.images[0]

css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="main-div">
              <div>
                <h1>Showee V1.0</h1>
              </div>
              <p>
               Demo for <a href="https://huggingface.co/showee/showee-lora-v1.0">Showee V1.0</a> LoRA adaption weights fine-tuned from <a href="https://huggingface.co/andite/anything-v4.0">Anything V4.0</a> Stable Diffusion model.<br>
               {"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
              </p>
              Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/showee/showee-v1.0/settings'>Settings</a></b>"} after duplicating the space<br><br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/showee/showee-v1.0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))

              image_out = gr.Image(height=512)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt",
                                      placeholder="What to exclude from the image",
                                      value="NSFW, lowres, ((bad anatomy)), ((bad hands)), text, missing finger, "
                                            "extra digits, fewer digits, blurry, ((mutated hands and fingers)), "
                                            "(poorly drawn face), ((mutation)), ((deformed face)), (ugly), "
                                            "((bad proportions)), ((extra limbs)), extra face, (double head), "
                                            "(extra head), ((extra feet)), monster, logo, cropped, worst quality, "
                                            "low quality, normal quality, jpeg, humpbacked, long body, long neck, "
                                            "((jpeg artifacts))")
              auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    gr.Examples(
        [[
            "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, solo, white hair, green eyes, "
            "aqua_eyes, cat_ears, :3, ahoge, dress, red_jacket, long_sleeves, bangs, black_legwear, hair_ornament, "
            "hairclip",  8, 25, 768, 1024, 909198616
        ],
            [
                "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, "
                "asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
                "long_hair, navel, thighhighs, smile", 7.5, 25, 512, 768, 9
            ],
            [
                "masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes,  ahoge, seaside,"
                "asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
                "long_hair, navel, thighhighs", 7.5, 25, 512, 512, 353573117
            ]],
        [prompt, guidance, steps, width, height, seed],
    )

    auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)

    inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    gr.HTML("""
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
    </div>
    """)

demo.queue(concurrency_count=1)
demo.launch()