Spaces:
Runtime error
Runtime error
File size: 10,948 Bytes
f8b17b0 d010dfc f8b17b0 287c910 422ce01 f8b17b0 d010dfc f8b17b0 d010dfc f8b17b0 d010dfc f8b17b0 d010dfc 12fb4e7 af64cf3 d010dfc c526f0f d010dfc f8b17b0 d010dfc f8b17b0 d010dfc f8b17b0 d010dfc f8b17b0 d010dfc f8b17b0 d010dfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderKL
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def convert_safetensors_to_bin(pipeline, state_dict, alpha = 0.4):
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
visited = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if '.alpha' in key or key in visited:
continue
if 'text' in key:
layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER + '_')[-1].split('_')
curr_layer = pipeline.text_encoder
else:
layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET + '_')[-1].split('_')
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += '_' + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if 'lora_down' in key:
pair_keys.append(key.replace('lora_down', 'lora_up'))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace('lora_up', 'lora_down'))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
model_id = 'andite/anything-v4.0'
prefix = ''
lora_path = hf_hub_download(
"showee/showee-lora-v1.0", "showee-any4.0.safetensors"
)
vae_path = "./anything-v4.0-vae/diffusion_pytorch_model.bin"
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler)
pipe.vae.load_state_dict(torch.load(vae_path))
state_dict = load_file(lora_path)
pipe = convert_safetensors_to_bin(pipe, state_dict, 0.3)
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler)
pipe_i2i.vae.load_state_dict(torch.load(vae_path))
state_dict_i2i = load_file(lora_path)
pipe_i2i = convert_safetensors_to_bin(pipe, state_dict_i2i, 0.3)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe_i2i = pipe_i2i.to("cuda")
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False):
if torch.cuda.is_available():
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
else:
generator = torch.Generator().manual_seed(seed) if seed != 0 else None
prompt = f"{prefix} {prompt}" if auto_prefix else prompt
try:
if img is not None:
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
else:
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
except Exception as e:
return None, error_str(e)
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe_i2i(
prompt,
negative_prompt = neg_prompt,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Showee V1.0</h1>
</div>
<p>
Demo for <a href="https://huggingface.co/showee/showee-lora-v1.0">Showee V1.0</a> LoRA adaption weights fine-tuned from <a href="https://huggingface.co/andite/anything-v4.0">Anything V4.0</a> Stable Diffusion model.<br>
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
</p>
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/showee/showee-v1.0/settings'>Settings</a></b>"} after duplicating the space<br><br>
<a style="display:inline-block" href="https://huggingface.co/spaces/showee/showee-v1.0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt",
placeholder="What to exclude from the image",
value="NSFW, lowres, ((bad anatomy)), ((bad hands)), text, missing finger, "
"extra digits, fewer digits, blurry, ((mutated hands and fingers)), "
"(poorly drawn face), ((mutation)), ((deformed face)), (ugly), "
"((bad proportions)), ((extra limbs)), extra face, (double head), "
"(extra head), ((extra feet)), monster, logo, cropped, worst quality, "
"low quality, normal quality, jpeg, humpbacked, long body, long neck, "
"((jpeg artifacts))")
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=prefix, visible=prefix)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
gr.Examples(
[[
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, solo, white hair, green eyes, "
"aqua_eyes, cat_ears, :3, ahoge, dress, red_jacket, long_sleeves, bangs, black_legwear, hair_ornament, "
"hairclip", 8, 25, 768, 1024, 909198616
],
[
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, "
"asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
"long_hair, navel, thighhighs, smile", 7.5, 25, 512, 768, 9
],
[
"masterpiece, best quality, ultra-detailed, illustration, portrait, 1girl, :3, animal_ears, aqua_eyes, ahoge, seaside,"
"asymmetrical_legwear, bangs, black_footwear, black_skirt, breasts, cleavage, hair_ornament, hairclip, "
"long_hair, navel, thighhighs", 7.5, 25, 512, 512, 353573117
]],
[prompt, guidance, steps, width, height, seed],
)
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
</div>
""")
demo.queue(concurrency_count=1)
demo.launch()
|