Spaces:
Sleeping
Sleeping
import streamlit as st | |
import re | |
import time | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer | |
import tiktoken | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import grapheme | |
from unicodedata import category | |
from numpy.linalg import LinAlgError | |
class TokenizerAnalyzer: | |
def __init__(self): | |
self.tokenizers = {} | |
def add_tokenizer(self, name, model_name): | |
self.tokenizers[name] = model_name | |
def tokenize_text(self, tokenizer_name, text): | |
start_time = time.time() | |
if tokenizer_name == "gpt-4": | |
tokenizer = tiktoken.encoding_for_model(tokenizer_name) | |
tokens = tokenizer.encode(text) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(self.tokenizers[tokenizer_name]) | |
tokens = tokenizer.tokenize(text) | |
end_time = time.time() | |
tokenization_time = end_time - start_time | |
return tokens, tokenization_time | |
def analyze_vocab(self, vocab_file): | |
latin_count = 0 | |
non_latin_count = 0 | |
latin_total_length = 0 | |
non_latin_total_length = 0 | |
incomplete_bytes_count = 0 | |
# Regular expression to match sequences starting with '\\x' | |
incomplete_bytes_regex = special_char_regex = re.compile(r"(?<!\\)(\\x|\\\\x)") | |
with open(vocab_file, 'r') as f: | |
for line in f: | |
token = re.sub(r"^(?P<quote>['\"])(.*?)(?P=quote)$", r"\2", line) | |
if not "gpt-4" in vocab_file: | |
token = re.sub("_", "", token) | |
token = token.strip() | |
is_latin = True | |
token_length = len(token) | |
# Check for special character sequence at the beginning of the token | |
if incomplete_bytes_regex.match(token): | |
incomplete_bytes_count += 1 | |
continue # Skip further processing for this token | |
for char in token: | |
char_category = category(char) | |
if char_category != "Ll" and char_category != "Lu": # Check for non-Latin characters | |
is_latin = False | |
break # Exit the inner loop if a Latin character is found | |
# Process token based on its category | |
if is_latin: | |
latin_count += 1 | |
latin_total_length += token_length | |
else: | |
non_latin_count += 1 | |
non_latin_total_length += token_length | |
# non_latin_count += incomplete_hex_count | |
#average length doe not make sense because there are tokens like: /**************************************************************** | |
# non_latin_count also includes cases like .WaitFor | |
return { | |
"latin": latin_count, | |
"non_latin": non_latin_count, | |
"incomplete_bytes": incomplete_bytes_count | |
} | |
def visualize_tokens(self, text, tokenizer): | |
if tokenizer =="gpt-4": | |
tokenizer = tiktoken.encoding_for_model(tokenizer) | |
token_ids = tokenizer.encode(text) | |
graphemes = list(grapheme.graphemes(text)) | |
# token_ids, str_tokens = [], [] | |
# for grapheme_ in graphemes: | |
# token_id = tokenizer.encode(grapheme_) | |
# str_tokens.append(tokenizer.decode(token_id)) | |
# token_ids.append(token_id) | |
str_tokens = [] | |
for token in token_ids: | |
str_tokens.append(tokenizer.decode([token], errors="backslashreplace")) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer) | |
tokens = tokenizer.tokenize(text) | |
str_tokens = [] | |
for token in tokens: | |
str_tokens.append(tokenizer.convert_tokens_to_string([token])) | |
token_ids = tokenizer.convert_tokens_to_ids(tokens) | |
colors = ['#ffdab9', '#e6ee9c', '#9cddc8', '#bcaaa4', '#c5b0d5'] | |
html = "" | |
for i, token in enumerate(str_tokens): | |
color = colors[i % len(colors)] | |
html += f'<mark title="{token}" style="background-color: {color};">{token}</mark>' | |
st.write("Token IDs:", token_ids) | |
st.write(html, unsafe_allow_html=True) | |
def plot_vocab_counts(self, vocab_count_dict): | |
outer_keys = list(vocab_count_dict.keys()) | |
inner_keys = list(vocab_count_dict[outer_keys[0]].keys()) | |
values = [[vocab[key] for key in inner_keys] for vocab in vocab_count_dict.values()] | |
x = outer_keys | |
num_groups = len(x) | |
pastel_palette = sns.color_palette("pastel", num_groups) | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
bar_width = 0.8 / num_groups | |
x_pos = [i + (1 - 0.8) / 2 for i in range(num_groups)] | |
for i, y_values in enumerate(values): | |
x_val = [x_pos[j] + bar_width * i for j in range(num_groups)] | |
ax.bar(x_val, y_values, width=bar_width, label=x[i], color=pastel_palette[i]) | |
for j, value in enumerate(y_values): | |
ax.annotate(str(value), xy=(x_val[j], value), xytext=(0, 3), | |
textcoords="offset points", ha='center', va='bottom') | |
ax.set_ylabel('Count') | |
ax.set_title('Vocabulary Counts') | |
ax.set_xticks(x_pos) | |
ax.set_xticklabels(inner_keys, rotation=45, ha='right') | |
ax.legend(title='Vocabularies', loc='upper right') | |
st.pyplot(fig) | |
def draw_plots(self, df, tokenizer, selected_languages): | |
pastel_palette = sns.color_palette("pastel") | |
df_selected = df[df['language'].isin(selected_languages)] | |
plot_titles = [f"Time taken to tokenize across languages by {tokenizer}", f"Token Distribution across languages for {tokenizer}", f"Replacement Tokens distribution across languages for {tokenizer}"] | |
df_columns = [f"{tokenizer}_Time", f"{tokenizer}_TokensCount", f"{tokenizer}_ReplTokensCount"] | |
for i, column in enumerate(df_columns): | |
plt.figure(figsize=(10, 6)) | |
try: | |
sns.histplot(data=df_selected, x=column, hue="language", palette=pastel_palette, kde=True, element="step", stat="density") | |
if df_selected[column].nunique() > 1 and not df_selected[column].isnull().all(): | |
# Calculate mean and median | |
try: | |
mean_value = df_selected[column].mean() | |
median_value = df_selected[column].median() | |
# Add vertical lines for mean and median | |
plt.axvline(mean_value, color='red', linestyle='--', label=f'Mean: {mean_value:.2f}') | |
plt.axvline(median_value, color='blue', linestyle='--', label=f'Median: {median_value:.2f}') | |
# Add legend with only mean and median | |
plt.legend() | |
except LinAlgError: | |
st.warning("Singular matrix encountered. Skipping mean and median calculation.") | |
plt.title(plot_titles[i]) | |
plt.xlabel(column.split("_")[1]) | |
plt.ylabel("Density") | |
plt.xticks(rotation=45) | |
st.pyplot(plt.gcf()) | |
except Exception as e: | |
st.error(f"Can't Draw plot for {column}. Singular matrix encountered. Statistical measures cannot be calculated.") | |
plt.figure(figsize=(10, 6)) | |
sns.scatterplot(data=df_selected, x="GraphemesCount", y=f"{tokenizer}_TokensCount", hue="language", palette=pastel_palette) | |
plt.title(f"Graphemes vs. Token Counts across languages for {tokenizer}") | |
plt.xlabel("Graphemes Count") | |
plt.ylabel("Token Count") | |
plt.tight_layout() | |
st.pyplot(plt.gcf()) | |
def playground_tab(analyzer): | |
st.title("Tokenization Visualizer for Language Models") | |
st.markdown(""" | |
You can use this playgorund to visualize tokens generated by the tokenizers used by popular language models. | |
""") | |
tokenizer_name = st.selectbox("Choose a Tokenizer", options=list(analyzer.tokenizers.keys())) | |
text_input = st.text_area("Enter text below to visualize tokens:", height=300) | |
if st.button("Tokenize"): | |
if text_input.strip(): | |
analyzer.visualize_tokens(text_input, analyzer.tokenizers[tokenizer_name]) | |
else: | |
st.error("Please enter some text.") | |
def analysis_tab(analyzer): | |
st.title("Tokenizer Performance Analysis for Language Models") | |
st.markdown(""" | |
You can use this visualizer to understand how tokenizers work across several languages. The default configuration shows results for English, French, Spanish, Hindi, Nepali. | |
""") | |
dataset_df = pd.read_csv("data/aya_dataset_features.csv") | |
available_tokenizers = list(analyzer.tokenizers.keys()) | |
default_tokenizer = available_tokenizers[0] # Change this as per your requirement | |
selected_tokenizer = st.sidebar.selectbox("Select Tokenizer", options=available_tokenizers, index=available_tokenizers.index(default_tokenizer)) | |
languages = dataset_df["language"].unique() | |
default_languages = ["English", "French", "Spanish", "Hindi", "Nepali (individual language)"] | |
selected_languages = st.sidebar.multiselect("Select Languages", languages, default=default_languages) | |
analyzer.draw_plots(dataset_df, selected_tokenizer, selected_languages) | |
# Time, Memory --> across languages across tokenizers | |
# replacement tokens count - across languages across tokenizers | |
# token distribution - across languages across tokenizers | |
# graphemes v/s byte counts across languages | |
# graphemes v/s token counts across languages | |
#Vocab counts visualization | |
st.subheader("Latin v/s Non-Latin Entries in Vocab") | |
st.markdown(""" | |
GPT-4 **cl100k_base.tiktoken** vocab contains: | |
- 70,988 entries containing only Latin characters | |
- 29,268 entries containing at least one non-Latin character | |
- 803 entries with partial byte sequences | |
""") | |
vocab_path = ["vocab/gpt-4-vocab.txt", "vocab/nllb-vocab.txt", "vocab/roberta-vocab.txt"] | |
vocab_count_dicts = {} | |
for vocab in vocab_path: | |
vocab_name = vocab.split("/")[-1].split(".")[0] | |
vocab_count_dict = analyzer.analyze_vocab(vocab) | |
vocab_count_dicts[vocab_name] = vocab_count_dict | |
analyzer.plot_vocab_counts(vocab_count_dicts) | |
def main(): | |
huggingface_tokenizers ={ | |
"XLM-RoBERTa": "FacebookAI/xlm-roberta-base", | |
"nllb-200-distilled-600M": "facebook/nllb-200-distilled-600M", | |
} | |
openai_tokenizers = { | |
'gpt-4': 'gpt-4', | |
} | |
st.sidebar.header("Welcome to Tokenization Playground") | |
tabs = ['Playground', 'Analysis'] | |
selected_tab = selected_tab = st.sidebar.selectbox('Select from options below:', tabs) | |
st.sidebar.markdown(""" | |
This App was created as a part of the project: "Beyond the ABCs: Exploring the nuances of tokenization in diverse languages. | |
""") | |
analyzer = TokenizerAnalyzer() | |
for tokenizer, src in huggingface_tokenizers.items(): | |
analyzer.add_tokenizer(tokenizer, src) | |
for tokenizer, _ in openai_tokenizers.items(): | |
analyzer.add_tokenizer(tokenizer, tokenizer) | |
if selected_tab == 'Playground': | |
playground_tab(analyzer) | |
elif selected_tab == 'Analysis': | |
analysis_tab(analyzer) | |
if __name__ == "__main__": | |
main() | |