Spaces:
Runtime error
Runtime error
import numpy as np | |
import errno | |
import os | |
import cv2 | |
import math | |
from shapely.geometry import Polygon | |
from IndicPhotoOCR.detection.textbpn.cfglib.config import config as cfg | |
from scipy import ndimage as ndimg | |
def to_device(*tensors): | |
if len(tensors) < 2: | |
return tensors[0].to(cfg.device, non_blocking=True) | |
return (t.to(cfg.device, non_blocking=True) for t in tensors) | |
def mkdirs(newdir): | |
""" | |
make directory with parent path | |
:param newdir: target path | |
""" | |
try: | |
if not os.path.exists(newdir): | |
os.makedirs(newdir) | |
except OSError as err: | |
# Reraise the error unless it's about an already existing directory | |
if err.errno != errno.EEXIST or not os.path.isdir(newdir): | |
raise | |
def rescale_result(image, bbox_contours, H, W): | |
ori_H, ori_W = image.shape[:2] | |
image = cv2.resize(image, (W, H)) | |
contours = list() | |
for cont in bbox_contours: | |
# if cv2.contourArea(cont) < 300: | |
# continue | |
cont[:, 0] = (cont[:, 0] * W / ori_W).astype(int) | |
cont[:, 1] = (cont[:, 1] * H / ori_H).astype(int) | |
contours.append(cont) | |
return image, contours | |
def fill_hole(input_mask): | |
h, w = input_mask.shape | |
canvas = np.zeros((h + 2, w + 2), np.uint8) | |
canvas[1:h + 1, 1:w + 1] = input_mask.copy() | |
mask = np.zeros((h + 4, w + 4), np.uint8) | |
cv2.floodFill(canvas, mask, (0, 0), 1) | |
canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool) | |
return (~canvas | input_mask.astype(np.uint8)) | |
def regularize_sin_cos(sin, cos): | |
# regularization | |
scale = np.sqrt(1.0 / (sin ** 2 + cos ** 2)) | |
return sin * scale, cos * scale | |
def gaussian2D(shape, sigma=1): | |
m, n = [(ss - 1.) / 2. for ss in shape] | |
y, x = np.ogrid[-m:m + 1, -n:n + 1] | |
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) | |
h[h < np.finfo(h.dtype).eps * h.max()] = 0 | |
return h | |
def draw_gaussian(heatmap, center, radius, k=1, delte=6): | |
diameter = 2 * radius + 1 | |
gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte) | |
x, y = center | |
height, width = heatmap.shape[0:2] | |
left, right = min(x, radius), min(width - x, radius + 1) | |
top, bottom = min(y, radius), min(height - y, radius + 1) | |
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] | |
masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] | |
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) | |
def gaussian_radius(det_size, min_overlap=0.7): | |
height, width = det_size | |
a1 = 1 | |
b1 = (height + width) | |
c1 = width * height * (1 - min_overlap) / (1 + min_overlap) | |
sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) | |
r1 = (b1 + sq1) / 2 | |
a2 = 4 | |
b2 = 2 * (height + width) | |
c2 = (1 - min_overlap) * width * height | |
sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) | |
r2 = (b2 + sq2) / 2 | |
a3 = 4 * min_overlap | |
b3 = -2 * min_overlap * (height + width) | |
c3 = (min_overlap - 1) * width * height | |
sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) | |
r3 = (b3 + sq3) / 2 | |
return min(r1, r2, r3) | |
def point_dist_to_line(line, p3): | |
# 计算点到直线的距离 | |
# line = (p1, p2) | |
# compute the distance from p3 to p1-p2 #cross(x,y)矩阵的叉积,norm()求范数 | |
# np.linalg.norm(np.cross(p2 - p1, p1 - p3)) * 1.0 / np.linalg.norm(p2 - p1) | |
# compute the distance from p3 to p1-p2 | |
p1, p2 = line | |
d = p2 - p1 | |
def l2(p): | |
return math.sqrt(p[0] * p[0]+ p[1]*p[1]) | |
if l2(d) > 0: | |
distance = abs(d[1] * p3[0] - d[0] * p3[1] + p2[0] * p1[1] - p2[1] * p1[0]) / l2(d) | |
else: | |
distance = math.sqrt((p3[0]-p2[0])**2 + (p3[1]-p2[1])**2) | |
return distance | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def norm2(x, axis=None): | |
if axis: | |
return np.sqrt(np.sum(x ** 2, axis=axis)) | |
return np.sqrt(np.sum(x ** 2)) | |
def cos(p1, p2): | |
return (p1 * p2).sum() / (norm2(p1) * norm2(p2)) | |
def vector_sin(v): | |
assert len(v) == 2 | |
# sin = y / (sqrt(x^2 + y^2)) | |
l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5 | |
return v[1] / l | |
def vector_cos(v): | |
assert len(v) == 2 | |
# cos = x / (sqrt(x^2 + y^2)) | |
l = np.sqrt(v[0] ** 2 + v[1] ** 2) + 1e-5 | |
return v[0] / l | |
def find_bottom(pts): | |
if len(pts) > 4: | |
e = np.concatenate([pts, pts[:3]]) | |
candidate = [] | |
for i in range(1, len(pts) + 1): | |
v_prev = e[i] - e[i - 1] | |
v_next = e[i + 2] - e[i + 1] | |
if cos(v_prev, v_next) < -0.875: | |
candidate.append((i % len(pts), (i + 1) % len(pts), norm2(e[i] - e[i + 1]))) | |
if len(candidate) != 2 or candidate[0][0] == candidate[1][1] or candidate[0][1] == candidate[1][0]: | |
# if candidate number < 2, or two bottom are joined, select 2 farthest edge | |
mid_list = [] | |
dist_list = [] | |
if len(candidate) > 2: | |
bottom_idx = np.argsort([angle for s1, s2, angle in candidate])[0:2] | |
bottoms = [candidate[bottom_idx[0]][:2], candidate[bottom_idx[1]][0:2]] | |
long_edge1, long_edge2 = find_long_edges(pts, bottoms) | |
edge_length1 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge1] | |
edge_length2 = [norm2(pts[e1] - pts[e2]) for e1, e2 in long_edge2] | |
l1 = sum(edge_length1) | |
l2 = sum(edge_length2) | |
len1 = len(edge_length1) | |
len2 = len(edge_length2) | |
if l1 > 2*l2 or l2 > 2*l1 or len1 == 0 or len2 == 0: | |
for i in range(len(pts)): | |
mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2 | |
mid_list.append((i, (i + 1) % len(pts), mid_point)) | |
for i in range(len(pts)): | |
for j in range(len(pts)): | |
s1, e1, mid1 = mid_list[i] | |
s2, e2, mid2 = mid_list[j] | |
dist = norm2(mid1 - mid2) | |
dist_list.append((s1, e1, s2, e2, dist)) | |
bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-1] | |
bottoms = [dist_list[bottom_idx][:2], dist_list[bottom_idx][2:4]] | |
else: | |
mid_list = [] | |
for i in range(len(pts)): | |
mid_point = (e[i] + e[(i + 1) % len(pts)]) / 2 | |
mid_list.append((i, (i + 1) % len(pts), mid_point)) | |
dist_list = [] | |
for i in range(len(pts)): | |
for j in range(len(pts)): | |
s1, e1, mid1 = mid_list[i] | |
s2, e2, mid2 = mid_list[j] | |
dist = norm2(mid1 - mid2) | |
dist_list.append((s1, e1, s2, e2, dist)) | |
bottom_idx = np.argsort([dist for s1, e1, s2, e2, dist in dist_list])[-2:] | |
bottoms = [dist_list[bottom_idx[0]][:2], dist_list[bottom_idx[1]][:2]] | |
else: | |
bottoms = [candidate[0][:2], candidate[1][:2]] | |
else: | |
d1 = norm2(pts[1] - pts[0]) + norm2(pts[2] - pts[3]) | |
d2 = norm2(pts[2] - pts[1]) + norm2(pts[0] - pts[3]) | |
bottoms = [(0, 1), (2, 3)] if d1 < d2 else [(1, 2), (3, 0)] | |
# bottoms = [(0, 1), (2, 3)] if 2 * d1 < d2 and d1 > 32 else [(1, 2), (3, 0)] | |
assert len(bottoms) == 2, 'fewer than 2 bottoms' | |
return bottoms | |
def split_long_edges(points, bottoms): | |
""" | |
Find two long edge sequence of and polygon | |
""" | |
b1_start, b1_end = bottoms[0] | |
b2_start, b2_end = bottoms[1] | |
n_pts = len(points) | |
i = b1_end + 1 | |
long_edge_1 = [] | |
while i % n_pts != b2_end: | |
long_edge_1.append((i - 1, i)) | |
i = (i + 1) % n_pts | |
i = b2_end + 1 | |
long_edge_2 = [] | |
while i % n_pts != b1_end: | |
long_edge_2.append((i - 1, i)) | |
i = (i + 1) % n_pts | |
return long_edge_1, long_edge_2 | |
def find_long_edges(points, bottoms): | |
b1_start, b1_end = bottoms[0] | |
b2_start, b2_end = bottoms[1] | |
n_pts = len(points) | |
i = (b1_end + 1) % n_pts | |
long_edge_1 = [] | |
while i % n_pts != b2_end: | |
start = (i - 1) % n_pts | |
end = i % n_pts | |
long_edge_1.append((start, end)) | |
i = (i + 1) % n_pts | |
i = (b2_end + 1) % n_pts | |
long_edge_2 = [] | |
while i % n_pts != b1_end: | |
start = (i - 1) % n_pts | |
end = i % n_pts | |
long_edge_2.append((start, end)) | |
i = (i + 1) % n_pts | |
return long_edge_1, long_edge_2 | |
def split_edge_seqence(points, n_parts): | |
pts_num = points.shape[0] | |
long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)] | |
edge_length = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge] | |
point_cumsum = np.cumsum([0] + edge_length) | |
total_length = sum(edge_length) | |
length_per_part = total_length / n_parts | |
cur_node = 0 # first point | |
splited_result = [] | |
for i in range(1, n_parts): | |
cur_end = i * length_per_part | |
while cur_end > point_cumsum[cur_node + 1]: | |
cur_node += 1 | |
e1, e2 = long_edge[cur_node] | |
e1, e2 = points[e1], points[e2] | |
# start_point = points[long_edge[cur_node]] | |
end_shift = cur_end - point_cumsum[cur_node] | |
ratio = end_shift / edge_length[cur_node] | |
new_point = e1 + ratio * (e2 - e1) | |
# print(cur_end, point_cumsum[cur_node], end_shift, edge_length[cur_node], '=', new_point) | |
splited_result.append(new_point) | |
# add first and last point | |
p_first = points[long_edge[0][0]] | |
p_last = points[long_edge[-1][1]] | |
splited_result = [p_first] + splited_result + [p_last] | |
return np.stack(splited_result) | |
def split_edge_seqence_with_cell_division(points, n_parts): | |
points_seq = list(points) | |
pts_num = len(points_seq) | |
if pts_num <= n_parts: | |
long_edge = [(i, (i + 1) % pts_num) for i in range(pts_num)] | |
edge_length = [int(norm2(points[e1] - points[e2])) for e1, e2 in long_edge] | |
while pts_num < n_parts: | |
e = np.argmax(np.array(edge_length)) | |
new_pts = (points_seq[e] + points_seq[(e+1) % pts_num])*0.5 | |
points_seq.insert(e+1, new_pts) | |
d = int(0.5 * (edge_length[e]-1)) | |
edge_length[e] = d | |
edge_length.insert(e+1, d) | |
pts_num = len(points_seq) | |
else: | |
pass | |
return np.stack(points_seq).astype(int) | |
def split_edge_seqence_by_step(points, long_edge1, long_edge2, step=16.0): | |
edge_length1 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge1] | |
edge_length2 = [norm2(points[e1] - points[e2]) for e1, e2 in long_edge2] | |
# 取长边 计算bbox个数 | |
total_length = (sum(edge_length1)+sum(edge_length2))/2 | |
n_parts = math.ceil(float(total_length) / step) | |
try: | |
inner1 = split_edge_seqence(points, long_edge1, n_parts=n_parts) | |
inner2 = split_edge_seqence(points, long_edge2, n_parts=n_parts) | |
except: | |
print(edge_length1) | |
print(edge_length2) | |
return inner1, inner2 | |
def disjoint_find(x, F): | |
if F[x] == x: | |
return x | |
F[x] = disjoint_find(F[x], F) | |
return F[x] | |
def disjoint_merge(x, y, F): | |
x = disjoint_find(x, F) | |
y = disjoint_find(y, F) | |
if x == y: | |
return False | |
F[y] = x | |
return True | |
def merge_polygons(polygons, merge_map): | |
def merge_two_polygon(p1, p2): | |
p2 = Polygon(p2) | |
merged = p1.union(p2) | |
return merged | |
merge_map = [disjoint_find(x, merge_map) for x in range(len(merge_map))] | |
merge_map = np.array(merge_map) | |
final_polygons = [] | |
for i in np.unique(merge_map): | |
merge_idx = np.where(merge_map == i)[0] | |
if len(merge_idx) > 0: | |
merged = Polygon(polygons[merge_idx[0]]) | |
for j in range(1, len(merge_idx)): | |
merged = merge_two_polygon(merged, polygons[merge_idx[j]]) | |
x, y = merged.exterior.coords.xy | |
final_polygons.append(np.stack([x, y], axis=1).astype(int)) | |
return final_polygons | |
def get_sample_point(text_mask, num_points, approx_factor, scales=None): | |
# get sample point in contours | |
contours, _ = cv2.findContours(text_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
epsilon = approx_factor * cv2.arcLength(contours[0], True) | |
approx = cv2.approxPolyDP(contours[0], epsilon, True).reshape((-1, 2)) | |
# approx = contours[0].reshape((-1, 2)) | |
if scales is None: | |
ctrl_points = split_edge_seqence(approx, num_points) | |
else: | |
ctrl_points = split_edge_seqence(approx*scales, num_points) | |
ctrl_points = np.array(ctrl_points[:num_points, :]).astype(np.int32) | |
return ctrl_points | |