Spaces:
Runtime error
Runtime error
File size: 18,356 Bytes
18f8de6 98af3bf 18f8de6 e9cddb1 18f8de6 e9cddb1 18f8de6 2f6ce67 18f8de6 de2567e 18f8de6 d7dc650 6297b77 d7dc650 18f8de6 0ab7e65 8144a1f 0ab7e65 8144a1f 0ab7e65 e9cddb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from st_aggrid import AgGrid
from st_aggrid.grid_options_builder import GridOptionsBuilder
from st_aggrid.shared import JsCode
from st_aggrid.shared import GridUpdateMode
from transformers import T5Tokenizer, BertForSequenceClassification,AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import numpy as np
import json
from transformers import AutoTokenizer, BertTokenizer, AutoModelWithLMHead
import pytorch_lightning as pl
from pathlib import Path
# Defining some functions for caching purpose by streamlit
class TranslationModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-ja-en", return_dict=True)
@st.experimental_singleton
def loadFineTunedJaEn_NMT_Model():
save_dest = Path('model')
save_dest.mkdir(exist_ok=True)
f_checkpoint = Path("model/best-checkpoint.ckpt")
if not f_checkpoint.exists():
with st.spinner("Downloading model.This may take a while! \n Don't refresh or close this page!"):
from GD_download import download_file_from_google_drive
download_file_from_google_drive('1CZQKGj9hSqj7kEuJp_jm7bNVXrbcFsgP', f_checkpoint)
trained_model = TranslationModel.load_from_checkpoint(f_checkpoint)
return trained_model
@st.experimental_singleton
def getJpEn_Tokenizers():
try:
with st.spinner("Downloading English and Japanese Transformer Tokenizers"):
ja_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ja-en")
en_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
except:
st.error("Issue with downloading tokenizers")
return ja_tokenizer, en_tokenizer
st.set_page_config(layout="wide")
st.title("Project - Japanese Natural Language Processing (自然言語処理) using Transformers")
st.sidebar.subheader("自然言語処理 トピック")
topic = st.sidebar.radio(label="Select the NLP project topics", options=["Sentiment Analysis","Text Summarization","Japanese to English Translation"])
st.write("-" * 5)
jp_review_text = None
#JAPANESE_SENTIMENT_PROJECT_PATH = './Japanese Amazon reviews sentiments/'
if topic == "Sentiment Analysis":
st.markdown(
"<h2 style='text-align: left; color:#EE82EE; font-size:25px;'><b>Transfer Learning based Japanese Sentiments Analysis using BERT<b></h2>",
unsafe_allow_html=True)
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Japanese Amazon Reviews Data (日本のAmazonレビューデータ)<b></h3>",
unsafe_allow_html=True)
amazon_jp_reviews = pd.read_csv("review_val.csv").sample(frac=1,random_state=10).iloc[:16000]
cellstyle_jscode = JsCode(
"""
function(params) {
if (params.value.includes('positive')) {
return {
'color': 'black',
'backgroundColor': '#32CD32'
}
} else {
return {
'color': 'black',
'backgroundColor': '#FF7F7F'
}
}
};
"""
)
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;justify-content: center;} </style>',
unsafe_allow_html=True)
st.write('<style>div.st-bf{flex-direction:column;} div.st-ag{font-weight:bold;padding-left:2px;}</style>',
unsafe_allow_html=True)
choose = st.radio("", ("Choose a review from the dataframe below", "Manually write review"))
SELECT_ONE_REVIEW = "Choose a review from the dataframe below"
WRITE_REVIEW = "Manually write review"
gb = GridOptionsBuilder.from_dataframe(amazon_jp_reviews)
gb.configure_column("sentiment", cellStyle=cellstyle_jscode)
gb.configure_pagination()
if choose == SELECT_ONE_REVIEW:
gb.configure_selection(selection_mode="single", use_checkbox=True, suppressRowDeselection=False)
gridOptions = gb.build()
if choose == SELECT_ONE_REVIEW:
jp_review_choice = AgGrid(amazon_jp_reviews, gridOptions=gridOptions, theme='material',
enable_enterprise_modules=True,
allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED)
st.info("Select any one the Japanese Reviews by clicking the checkbox. Reviews can be navigated from each page.")
if len(jp_review_choice['selected_rows']) != 0:
jp_review_text = jp_review_choice['selected_rows'][0]['review']
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Selected Review in JSON (JSONで選択されたレビュー)<b></h3>",
unsafe_allow_html=True)
st.write(jp_review_choice['selected_rows'])
if choose == WRITE_REVIEW:
AgGrid(amazon_jp_reviews, gridOptions=gridOptions, theme='material',
enable_enterprise_modules=True,
allow_unsafe_jscode=True)
with open("test_reviews_jp.csv", "rb") as file:
st.download_button(label="Download Additional Japanese Reviews", data=file,
file_name="Additional Japanese Reviews.csv")
st.info("Additional subset of Japanese Reviews can be downloaded and any review can be copied & pasted in text area.")
sample_japanese_review_input = "子供のレッスンバッグ用に購入。 思ったより大きく、ピアノ教本を入れるには充分でした。中は汚れてました。 何より驚いたのは、商品の梱包。 2つ折は許せるが、透明ビニール袋の底思いっきり空いてますけど? 何これ?包むっていうか挟んで終わり?底が全開している。 引っ張れば誰でも中身の注文書も、商品も見れる状態って何なの? 個人情報が晒されて、商品も粗末な扱いで嫌な気持ちでした。 郵送で中身が無事のが奇跡じゃないでしょうか? ありえない"
jp_review_text = st.text_area(label="Press 'Ctrl+Enter' after writing review in below text area",
value=sample_japanese_review_input)
if len(jp_review_text) == 0:
st.error("Input text cannot empty. Either write the japanese review in text area manually or select the review from the grid.")
if jp_review_text:
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Sentence-Piece based Japanese Tokenizer using RoBERTA<b></h3>",
unsafe_allow_html=True)
tokens_column, tokenID_column = st.columns(2)
tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
tokens = tokenizer.tokenize(jp_review_text)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
with tokens_column:
token_expander = st.expander("Expand to see the tokens", expanded=False)
with token_expander:
st.write(tokens)
with tokenID_column:
tokenID_expander = st.expander("Expand to see the token IDs", expanded=False)
with tokenID_expander:
st.write(token_ids)
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Encoded Japanese Review Text to get Input IDs and attention masks as PyTorch Tensor<b></h3>",
unsafe_allow_html=True)
encoded_data = tokenizer.batch_encode_plus(np.array([jp_review_text]).astype('object'),
add_special_tokens=True,
return_attention_mask=True,
padding=True,
max_length=200,
return_tensors='pt',
truncation=True)
input_ids = encoded_data['input_ids']
attention_masks = encoded_data['attention_mask']
input_ids_column, attention_masks_column = st.columns(2)
with input_ids_column:
input_ids_expander = st.expander("Expand to see the input IDs tensor")
with input_ids_expander:
st.write(input_ids)
with attention_masks_column:
attention_masks_expander = st.expander("Expand to see the attention mask tensor")
with attention_masks_expander:
st.write(attention_masks)
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Predict Sentiment of review using Fine-Tuned Japanese BERT<b></h3>",
unsafe_allow_html=True)
label_dict = {'positive': 1, 'negative': 0}
if st.button("Predict Sentiment"):
with st.spinner("Wait.."):
predictions = []
model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
num_labels=len(label_dict),
output_attentions=False,
output_hidden_states=False)
#model.load_state_dict(
# torch.load(JAPANESE_SENTIMENT_PROJECT_PATH + 'FineTuneJapaneseBert_AmazonReviewSentiments.pt',
# map_location=torch.device('cpu')))
model.load_state_dict(
torch.load('reviewSentiments_jp.pt',
map_location=torch.device('cpu')))
inputs = {
'input_ids': input_ids,
'attention_mask': attention_masks
}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
logits = logits.detach().cpu().numpy()
scores = 1 / (1 + np.exp(-1 * logits))
result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]}
result_col,graph_col = st.columns(2)
with result_col:
st.write(result)
with graph_col:
fig = px.bar(x=['NEGATIVE (ネガティブ)','POSITIVE (ポジティブ)'],y=[result['NEGATIVE (ネガティブ)'],result['POSITIVE (ポジティブ)']])
fig.update_layout(title="Probability distribution of Sentiment for the given text",\
yaxis_title="Probability (確率)")
fig.update_traces(marker_color=['#FF7F7F','#32CD32'])
st.plotly_chart(fig)
elif topic == "Text Summarization":
st.markdown(
"<h2 style='text-align: left; color:#EE82EE; font-size:25px;'><b>Summarizing Japanese News Article using multi-Lingual T5 (mT5)<b></h2>",
unsafe_allow_html=True)
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Japanese News Article Data<b></h3>",
unsafe_allow_html=True)
news_articles = pd.read_csv("jp_news_articles.csv").sample(frac=0.75,
random_state=42)
gb = GridOptionsBuilder.from_dataframe(news_articles)
gb.configure_pagination()
gb.configure_selection(selection_mode="single", use_checkbox=True, suppressRowDeselection=False)
gridOptions = gb.build()
jp_article = AgGrid(news_articles, gridOptions=gridOptions, theme='material',
enable_enterprise_modules=True,
allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED)
# WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
if len(jp_article['selected_rows']) == 0:
st.info("Pick any one Japanese News Article by selecting the checkbox. News articles can be navigated by clicking on page navigator at right-bottom")
else:
article_text = jp_article['selected_rows'][0]['News Articles']
text = st.text_area(label="Text from selected Japanese News Article(ニュース記事)", value=article_text, height=500)
summary_length = st.slider(label="Select the maximum length of summary (要約の最大長を選択します )", min_value=120,max_value=160,step=5)
if text and st.button("Summarize it! (要約しよう)"):
waitPlaceholder = st.image("wait.gif")
summarization_model_name = "csebuetnlp/mT5_multilingual_XLSum"
tokenizer = AutoTokenizer.from_pretrained(summarization_model_name )
model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_name )
input_ids = tokenizer(
article_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512
)["input_ids"]
output_ids = model.generate(
input_ids=input_ids,
max_length=summary_length,
no_repeat_ngram_size=2,
num_beams=4
)[0]
summary = tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
waitPlaceholder.empty()
st.markdown(
"<h2 style='text-align: left; color:#32CD32; font-size:25px;'><b>Summary (要約文)<b></h2>",
unsafe_allow_html=True)
st.write(summary)
elif topic == "Japanese to English Translation":
st.markdown(
"<h2 style='text-align: left; color:#EE82EE; font-size:25px;'><b>Japanese to English translation (for short sentences)<b></h2>",
unsafe_allow_html=True)
st.markdown(
"<h3 style='text-align: center; color:#F63366; font-size:18px;'><b>Business Scene Dialog Japanese-English Corpus<b></h3>",
unsafe_allow_html=True)
st.write("Below given Japanese-English pair is from 'Business Scene Dialog Corpus' by the University of Tokyo")
link = '[Corpus GitHub Link](https://github.com/tsuruoka-lab/BSD)'
st.markdown(link, unsafe_allow_html=True)
bsd_more_info = st.expander(label="Expand to get more information on data and training report")
with bsd_more_info:
st.markdown(
"<h3 style='text-align: left; color:#F63366; font-size:12px;'><b>Training Dataset<b></h3>",
unsafe_allow_html=True)
st.write("The corpus has total 20,000 Japanese-English Business Dialog pairs. The fined-tuned Transformer model is validated on 670 Japanese-English Business Dialog pairs")
st.markdown(
"<h3 style='text-align: left; color:#F63366; font-size:12px;'><b>Training Report<b></h3>",
unsafe_allow_html=True)
st.write(
"The Dashboard for training result on Tensorboard is [here](https://tensorboard.dev/experiment/eWhxt1i2RuaU64krYtORhw/)")
with open("./BSD_ja-en_val.json", encoding='utf-8') as f:
bsd_sample_data = json.load(f)
en, ja = [], []
for i in range(len(bsd_sample_data)):
for j in range(len(bsd_sample_data[i]['conversation'])):
en.append(bsd_sample_data[i]['conversation'][j]['en_sentence'])
ja.append(bsd_sample_data[i]['conversation'][j]['ja_sentence'])
df = pd.DataFrame.from_dict({'Japanese': ja, 'English': en})
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_pagination()
gb.configure_selection(selection_mode="single", use_checkbox=True, suppressRowDeselection=False)
gridOptions = gb.build()
translation_text = AgGrid(df, gridOptions=gridOptions, theme='material',
enable_enterprise_modules=True,
allow_unsafe_jscode=True, update_mode=GridUpdateMode.SELECTION_CHANGED)
if len(translation_text['selected_rows']) != 0:
bsd_jp = translation_text['selected_rows'][0]['Japanese']
st.markdown(
"<h2 style='text-align: left; color:#32CD32; font-size:25px;'><b>Business Scene Dialog in Japanese (日本語でのビジネスシーンダイアログ)<b></h2>",
unsafe_allow_html=True)
st.write(bsd_jp)
if st.button("Translate"):
ja_tokenizer, en_tokenizer = getJpEn_Tokenizers()
trained_model = loadFineTunedJaEn_NMT_Model()
trained_model.freeze()
def translate(text):
text_encoding = ja_tokenizer(
text,
max_length=100,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors='pt'
)
generated_ids = trained_model.model.generate(
input_ids=text_encoding['input_ids'],
attention_mask=text_encoding['attention_mask'],
max_length=100,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [en_tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True) for
gen_id in generated_ids]
return "".join(preds)[5:]
st.markdown(
"<h2 style='text-align: left; color:#32CD32; font-size:25px;'><b>Translated Dialog in English (英語の翻訳されたダイアログ)<b></h2>",
unsafe_allow_html=True)
st.write(translate(bsd_jp))
|