Spaces:
Running
Running
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
from openai import OpenAI | |
import json | |
import re | |
from urllib.parse import urljoin, urlparse | |
import time | |
import urllib3 | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import ssl | |
# Disable SSL warnings | |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) | |
class WebScrapingTool: | |
def __init__(self): | |
self.client = None | |
self.scraped_data = None # Store scraped data for fact-checking | |
self.analysis_result = None # Store analysis result for fact-checking | |
self.system_prompt = """You are a specialized web data extraction assistant. Your core purpose is to browse and analyze the content of web pages based on user instructions, and return structured or unstructured information from the provided URL. Your capabilities include: | |
1. Navigating and reading web page content from a given URL. | |
2. Extracting textual content including headings, paragraphs, lists, and metadata. | |
3. Identifying and extracting HTML tables and presenting them in a clean, structured format. | |
4. Creating new, custom tables based on user queries by processing, reorganizing, or filtering the content found on the source page. | |
You must always follow these guidelines: | |
- Accurately extract and summarize both structured (tables, lists) and unstructured (paragraphs, articles) content. | |
- Clearly separate different types of data (e.g., summaries, tables, bullet points). | |
- When extracting textual content: | |
- Maintain original meaning, structure, and tone. | |
- Capture all relevant sections based on user instructions (e.g., only the "Overview" or "Methodology" sections). | |
- When extracting tables: | |
- Preserve headers and align row data correctly. | |
- Identify and differentiate multiple tables, if present. | |
- When creating custom tables: | |
- Include only the relevant columns as per the user request. | |
- Sort, filter, and reorganize data accordingly. | |
- Use clear and consistent headers. | |
You must not hallucinate or infer data not present on the page. If content is missing, unclear, or restricted, say so explicitly. | |
Always respond based on the actual content from the provided link. If the page fails to load or cannot be accessed, inform the user immediately. | |
Your role is to act as an intelligent browser and data interpreter β able to read and reshape any web content to meet user needs.""" | |
self.factcheck_prompt = """You are an expert fact-checker and critical analysis assistant. Your role is to thoroughly examine AI-generated analysis results against the original source material to verify accuracy, identify potential errors, and assess the reliability of the analysis. | |
Your fact-checking responsibilities include: | |
1. **Accuracy Verification**: Compare each claim, statistic, and piece of information in the analysis against the original source content. | |
2. **Completeness Assessment**: Determine if important information was missed or if the analysis covers all relevant aspects. | |
3. **Error Detection**: Identify factual errors, misinterpretations, or misrepresentations of the source material. | |
4. **Context Verification**: Ensure that information is presented in proper context and not taken out of context. | |
5. **Consistency Check**: Verify that the analysis is internally consistent and doesn't contain contradictions. | |
For your fact-checking analysis, provide: | |
- **ACCURACY SCORE**: Rate the overall accuracy on a scale of 1-10 (10 being perfectly accurate) | |
- **KEY FINDINGS**: List what was correctly analyzed | |
- **ERRORS IDENTIFIED**: Point out any inaccuracies, misrepresentations, or missing information | |
- **VERIFICATION STATUS**: For each major claim, indicate whether it's VERIFIED, PARTIALLY VERIFIED, or CANNOT VERIFY | |
- **RECOMMENDATIONS**: Suggest improvements or corrections needed | |
Be thorough, objective, and provide specific examples when pointing out discrepancies. If the analysis is accurate, acknowledge its quality. If there are issues, be clear about what needs correction.""" | |
def setup_client(self, api_key): | |
"""Initialize OpenAI client with OpenRouter""" | |
try: | |
self.client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=api_key, | |
) | |
return True, "API client initialized successfully!" | |
except Exception as e: | |
return False, f"Failed to initialize API client: {str(e)}" | |
def create_session(self): | |
"""Create a robust session with retry strategy and proper headers""" | |
session = requests.Session() | |
# Define retry strategy with fixed parameter name | |
retry_strategy = Retry( | |
total=3, | |
status_forcelist=[429, 500, 502, 503, 504], | |
allowed_methods=["HEAD", "GET", "OPTIONS"], # Fixed: changed from method_whitelist | |
backoff_factor=1 | |
) | |
# Mount adapter with retry strategy | |
adapter = HTTPAdapter(max_retries=retry_strategy) | |
session.mount("http://", adapter) | |
session.mount("https://", adapter) | |
# Set comprehensive headers to mimic real browser | |
session.headers.update({ | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', | |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7', | |
'Accept-Language': 'en-US,en;q=0.9', | |
'Accept-Encoding': 'gzip, deflate, br', | |
'DNT': '1', | |
'Connection': 'keep-alive', | |
'Upgrade-Insecure-Requests': '1', | |
'Sec-Fetch-Dest': 'document', | |
'Sec-Fetch-Mode': 'navigate', | |
'Sec-Fetch-Site': 'none', | |
'Sec-Fetch-User': '?1', | |
'Cache-Control': 'max-age=0' | |
}) | |
return session | |
def scrape_webpage(self, url): | |
"""Scrape webpage content with enhanced error handling and timeouts""" | |
try: | |
session = self.create_session() | |
# Multiple timeout attempts with increasing duration | |
timeout_attempts = [15, 30, 45] | |
response = None | |
for timeout in timeout_attempts: | |
try: | |
print(f"Attempting to fetch {url} with {timeout}s timeout...") | |
response = session.get( | |
url, | |
timeout=timeout, | |
verify=False, # Disable SSL verification for problematic sites | |
allow_redirects=True, | |
stream=False | |
) | |
response.raise_for_status() | |
break | |
except requests.exceptions.Timeout: | |
if timeout == timeout_attempts[-1]: # Last attempt | |
return { | |
'success': False, | |
'error': f"Connection timed out after multiple attempts. The website may be slow or blocking automated requests." | |
} | |
continue | |
except requests.exceptions.SSLError: | |
# Try with different SSL context | |
try: | |
response = session.get( | |
url, | |
timeout=timeout, | |
verify=False, | |
allow_redirects=True | |
) | |
response.raise_for_status() | |
break | |
except: | |
continue | |
except requests.exceptions.RequestException as e: | |
if timeout == timeout_attempts[-1]: # Last attempt | |
return { | |
'success': False, | |
'error': f"Request failed: {str(e)}" | |
} | |
continue | |
# Check if we got a response | |
if response is None: | |
return { | |
'success': False, | |
'error': "Failed to establish connection after multiple attempts" | |
} | |
# Check content type | |
content_type = response.headers.get('content-type', '').lower() | |
if 'text/html' not in content_type and 'text/plain' not in content_type: | |
return { | |
'success': False, | |
'error': f"Invalid content type: {content_type}. Expected HTML content." | |
} | |
# Parse HTML content | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Remove unwanted elements | |
for element in soup(["script", "style", "nav", "footer", "header", "aside", "noscript", "iframe"]): | |
element.decompose() | |
# Remove elements with common ad/tracking classes | |
ad_classes = ['ad', 'advertisement', 'banner', 'popup', 'modal', 'cookie', 'newsletter'] | |
for class_name in ad_classes: | |
for element in soup.find_all(class_=re.compile(class_name, re.I)): | |
element.decompose() | |
# Extract text content | |
text_content = soup.get_text(separator=' ', strip=True) | |
# Clean up text - remove extra whitespace | |
text_content = re.sub(r'\s+', ' ', text_content) | |
text_content = text_content.strip() | |
# Extract tables with improved structure | |
tables = [] | |
for i, table in enumerate(soup.find_all('table')): | |
table_data = [] | |
headers = [] | |
# Try to find headers in various ways | |
header_row = table.find('thead') | |
if header_row: | |
header_row = header_row.find('tr') | |
else: | |
header_row = table.find('tr') | |
if header_row: | |
headers = [] | |
for th in header_row.find_all(['th', 'td']): | |
header_text = th.get_text(strip=True) | |
headers.append(header_text if header_text else f"Column_{len(headers)+1}") | |
# Extract all rows (skip header if it was already processed) | |
rows = table.find_all('tr') | |
start_idx = 1 if header_row and header_row in rows else 0 | |
for row in rows[start_idx:]: | |
cells = row.find_all(['td', 'th']) | |
if cells: | |
row_data = [] | |
for cell in cells: | |
cell_text = cell.get_text(strip=True) | |
row_data.append(cell_text) | |
if row_data and any(cell.strip() for cell in row_data): # Skip empty rows | |
table_data.append(row_data) | |
if table_data: | |
# Ensure headers match data columns | |
max_cols = max(len(row) for row in table_data) if table_data else 0 | |
if len(headers) < max_cols: | |
headers.extend([f"Column_{i+1}" for i in range(len(headers), max_cols)]) | |
elif len(headers) > max_cols: | |
headers = headers[:max_cols] | |
tables.append({ | |
'id': i + 1, | |
'headers': headers, | |
'data': table_data[:50] # Limit rows to prevent overwhelming | |
}) | |
# Extract metadata | |
title = soup.title.string.strip() if soup.title and soup.title.string else "No title found" | |
# Extract meta description | |
meta_desc = "" | |
desc_tag = soup.find('meta', attrs={'name': 'description'}) | |
if desc_tag and desc_tag.get('content'): | |
meta_desc = desc_tag['content'].strip() | |
return { | |
'success': True, | |
'text': text_content[:20000], # Limit text length | |
'tables': tables, | |
'title': title, | |
'meta_description': meta_desc, | |
'url': url, | |
'content_length': len(text_content) | |
} | |
except requests.exceptions.ConnectionError as e: | |
return { | |
'success': False, | |
'error': f"Connection failed: {str(e)}. The website may be down or blocking requests." | |
} | |
except requests.exceptions.HTTPError as e: | |
return { | |
'success': False, | |
'error': f"HTTP Error {e.response.status_code}: {e.response.reason}" | |
} | |
except requests.exceptions.RequestException as e: | |
return { | |
'success': False, | |
'error': f"Request failed: {str(e)}" | |
} | |
except Exception as e: | |
return { | |
'success': False, | |
'error': f"Unexpected error while processing webpage: {str(e)}" | |
} | |
def analyze_content(self, scraped_data, user_query, api_key): | |
"""Analyze scraped content using DeepSeek V3""" | |
if not self.client: | |
success, message = self.setup_client(api_key) | |
if not success: | |
return f"Error: {message}" | |
if not scraped_data['success']: | |
return f"Error scraping webpage: {scraped_data['error']}" | |
# Store scraped data for fact-checking | |
self.scraped_data = scraped_data | |
# Prepare content for AI analysis | |
content_text = f""" | |
WEBPAGE ANALYSIS REQUEST | |
======================== | |
URL: {scraped_data['url']} | |
Title: {scraped_data['title']} | |
Content Length: {scraped_data['content_length']} characters | |
Tables Found: {len(scraped_data['tables'])} | |
META DESCRIPTION: | |
{scraped_data['meta_description']} | |
MAIN CONTENT: | |
{scraped_data['text']} | |
""" | |
if scraped_data['tables']: | |
content_text += f"\n\nSTRUCTURED DATA - {len(scraped_data['tables'])} TABLE(S) FOUND:\n" | |
content_text += "=" * 50 + "\n" | |
for table in scraped_data['tables']: | |
content_text += f"\nTABLE {table['id']}:\n" | |
content_text += f"Headers: {' | '.join(table['headers'])}\n" | |
content_text += "-" * 50 + "\n" | |
for i, row in enumerate(table['data'][:10]): # Show first 10 rows | |
content_text += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n" | |
if len(table['data']) > 10: | |
content_text += f"... and {len(table['data']) - 10} more rows\n" | |
content_text += "\n" | |
try: | |
completion = self.client.chat.completions.create( | |
extra_headers={ | |
"HTTP-Referer": "https://gradio-web-scraper.com", | |
"X-Title": "AI Web Scraping Tool", | |
}, | |
model="deepseek/deepseek-chat-v3-0324:free", | |
messages=[ | |
{"role": "system", "content": self.system_prompt}, | |
{"role": "user", "content": f"{content_text}\n\nUSER REQUEST:\n{user_query}\n\nPlease analyze the above webpage content and fulfill the user's request. Be thorough and accurate."} | |
], | |
temperature=0.1, | |
max_tokens=4000 | |
) | |
result = completion.choices[0].message.content | |
# Store analysis result for fact-checking | |
self.analysis_result = result | |
return result | |
except Exception as e: | |
return f"Error analyzing content with AI: {str(e)}" | |
def fact_check_analysis(self, api_key): | |
"""Fact-check the analysis results using DeepSeek R1""" | |
if not self.client: | |
success, message = self.setup_client(api_key) | |
if not success: | |
return f"Error: {message}" | |
if not self.scraped_data or not self.analysis_result: | |
return "β No analysis results to fact-check. Please run an analysis first." | |
# Prepare content for fact-checking | |
factcheck_content = f""" | |
FACT-CHECKING TASK | |
================== | |
ORIGINAL SOURCE MATERIAL: | |
------------------------- | |
URL: {self.scraped_data['url']} | |
Title: {self.scraped_data['title']} | |
Content Length: {self.scraped_data['content_length']} characters | |
SOURCE TEXT: | |
{self.scraped_data['text']} | |
""" | |
if self.scraped_data['tables']: | |
factcheck_content += f"\n\nSOURCE TABLES ({len(self.scraped_data['tables'])} found):\n" | |
factcheck_content += "=" * 50 + "\n" | |
for table in self.scraped_data['tables']: | |
factcheck_content += f"\nTABLE {table['id']}:\n" | |
factcheck_content += f"Headers: {' | '.join(table['headers'])}\n" | |
factcheck_content += "-" * 50 + "\n" | |
for i, row in enumerate(table['data'][:15]): # Show more rows for fact-checking | |
factcheck_content += f"Row {i+1}: {' | '.join(str(cell) for cell in row)}\n" | |
if len(table['data']) > 15: | |
factcheck_content += f"... and {len(table['data']) - 15} more rows\n" | |
factcheck_content += "\n" | |
factcheck_content += f""" | |
AI ANALYSIS TO VERIFY: | |
====================== | |
{self.analysis_result} | |
FACT-CHECKING INSTRUCTIONS: | |
=========================== | |
Please thoroughly fact-check the AI analysis above against the original source material. Verify every claim, statistic, and piece of information. Provide a comprehensive fact-checking report.""" | |
try: | |
completion = self.client.chat.completions.create( | |
extra_headers={ | |
"HTTP-Referer": "https://gradio-web-scraper.com", | |
"X-Title": "AI Web Scraping Tool - Fact Checker", | |
}, | |
extra_body={}, | |
model="deepseek/deepseek-r1:free", | |
messages=[ | |
{"role": "system", "content": self.factcheck_prompt}, | |
{"role": "user", "content": factcheck_content} | |
] | |
) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error fact-checking with DeepSeek R1: {str(e)}" | |
def create_interface(): | |
tool = WebScrapingTool() | |
def process_request(api_key, url, user_query): | |
if not api_key.strip(): | |
return "β Please enter your OpenRouter API key" | |
if not url.strip(): | |
return "β Please enter a valid URL" | |
if not user_query.strip(): | |
return "β Please enter your analysis query" | |
# Validate URL format | |
if not url.startswith(('http://', 'https://')): | |
url = 'https://' + url | |
# Add progress updates | |
yield "π Initializing web scraper..." | |
time.sleep(0.5) | |
yield "π Fetching webpage content (this may take a moment)..." | |
# Scrape webpage | |
scraped_data = tool.scrape_webpage(url) | |
if not scraped_data['success']: | |
yield f"β Scraping Failed: {scraped_data['error']}" | |
return | |
yield f"β Successfully scraped webpage!\nπ Title: {scraped_data['title']}\nπ Found {len(scraped_data['tables'])} tables\nπ Content: {scraped_data['content_length']} characters\n\nπ€ Analyzing content with DeepSeek V3..." | |
# Analyze content | |
result = tool.analyze_content(scraped_data, user_query, api_key) | |
yield f"β Analysis Complete!\n{'='*50}\n\n{result}" | |
def fact_check_request(api_key): | |
if not api_key.strip(): | |
return "β Please enter your OpenRouter API key" | |
yield "π Starting fact-check with DeepSeek R1..." | |
time.sleep(0.5) | |
yield "π§ Analyzing accuracy and verifying claims..." | |
# Perform fact-checking | |
factcheck_result = tool.fact_check_analysis(api_key) | |
yield f"β Fact-Check Complete!\n{'='*50}\n\n{factcheck_result}" | |
# Create Gradio interface | |
with gr.Blocks(title="AI Web Scraping Tool with Fact-Checking", theme=gr.themes.Soft()) as app: | |
gr.Markdown(""" | |
# π€ AI Web Scraping Tool with Fact-Checking | |
### Powered by DeepSeek V3 & DeepSeek R1 via OpenRouter | |
Extract and analyze web content using advanced AI, then fact-check the results for accuracy and reliability. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
api_key_input = gr.Textbox( | |
label="π OpenRouter API Key", | |
placeholder="Enter your OpenRouter API key here...", | |
type="password", | |
info="Get your free API key from openrouter.ai" | |
) | |
url_input = gr.Textbox( | |
label="π Website URL", | |
placeholder="https://example.com or just example.com", | |
info="Enter the URL you want to scrape and analyze" | |
) | |
query_input = gr.Textbox( | |
label="π Analysis Query", | |
placeholder="What do you want to extract? (e.g., 'Extract main points and create a summary table')", | |
lines=4, | |
info="Describe what information you want to extract from the webpage" | |
) | |
with gr.Row(): | |
analyze_btn = gr.Button("π Analyze Website", variant="primary", size="lg") | |
factcheck_btn = gr.Button("π Fact-Check Results", variant="secondary", size="lg") | |
with gr.Row(): | |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary") | |
with gr.Column(scale=3): | |
output = gr.Textbox( | |
label="π Analysis Results", | |
lines=25, | |
max_lines=40, | |
show_copy_button=True, | |
interactive=False, | |
placeholder="Results will appear here after analysis..." | |
) | |
factcheck_output = gr.Textbox( | |
label="π Fact-Check Report", | |
lines=20, | |
max_lines=40, | |
show_copy_button=True, | |
interactive=False, | |
placeholder="Fact-check results will appear here after clicking 'Fact-Check Results'..." | |
) | |
# Tips and Examples | |
with gr.Accordion("π‘ Usage Tips & Fact-Checking Guide", open=False): | |
gr.Markdown(""" | |
## π **How to Use the Fact-Checking Feature:** | |
1. **First**: Enter your API key, URL, and analysis query | |
2. **Second**: Click "π Analyze Website" to get initial results | |
3. **Third**: Click "π Fact-Check Results" to verify accuracy with DeepSeek R1 | |
## π― **What the Fact-Checker Does:** | |
### **Accuracy Verification** | |
- Compares every claim in the analysis against the original source | |
- Identifies factual errors and misrepresentations | |
- Verifies numerical data and statistics | |
### **Completeness Assessment** | |
- Checks if important information was missed | |
- Evaluates coverage of all relevant aspects | |
- Identifies gaps in the analysis | |
### **Context Verification** | |
- Ensures information isn't taken out of context | |
- Verifies proper interpretation of source material | |
- Checks for misleading presentations | |
### **Quality Scoring** | |
- Provides accuracy scores (1-10 scale) | |
- Lists verified vs. unverified claims | |
- Offers specific recommendations for improvement | |
## π§ͺ **Best Practices for Fact-Checking:** | |
### **Ideal Test Cases:** | |
``` | |
URL: https://en.wikipedia.org/wiki/List_of_countries_by_population | |
Query: Create a table showing the top 10 most populous countries with their exact population figures | |
``` | |
*Perfect for fact-checking numerical accuracy* | |
``` | |
URL: https://www.who.int/news-room/fact-sheets | |
Query: Extract key health statistics and create a summary of global health metrics | |
``` | |
*Great for verifying official statistics* | |
``` | |
URL: https://finance.yahoo.com/quote/AAPL | |
Query: Extract Apple's current stock price, market cap, and financial metrics | |
``` | |
*Excellent for checking real-time financial data accuracy* | |
## π― **Example Analysis Queries for Fact-Checking:** | |
### **Data-Heavy Content** | |
- *"Extract all numerical data and organize it in a table format"* | |
- *"Create a comparison table of different countries' GDP figures"* | |
- *"List the top 10 items with their exact values from the source"* | |
### **Statistical Information** | |
- *"Summarize key statistics with specific numbers and percentages"* | |
- *"Extract survey results and present the exact figures"* | |
- *"Create a timeline with specific dates and events"* | |
### **Complex Analysis** | |
- *"Compare different viewpoints and cite specific quotes"* | |
- *"Extract cause-and-effect relationships mentioned in the article"* | |
- *"Summarize research findings with methodology details"* | |
## π **What Gets Fact-Checked:** | |
β **Verified Items:** | |
- Exact quotes and citations | |
- Numerical data and statistics | |
- Dates, names, and factual claims | |
- Table data accuracy | |
- Mathematical calculations | |
β οΈ **Flagged Issues:** | |
- Misquoted information | |
- Incorrect numbers or percentages | |
- Missing context or nuance | |
- Overgeneralized statements | |
- Unsupported conclusions | |
## π¨ **Red Flags the Fact-Checker Catches:** | |
- **Hallucinated Data**: Information not present in the source | |
- **Misattributed Quotes**: Quotes assigned to wrong sources | |
- **Mathematical Errors**: Incorrect calculations or summaries | |
- **Context Loss**: Information presented without proper context | |
- **Incomplete Extraction**: Missing important details from tables | |
## π‘ **Tips for Better Fact-Checking:** | |
1. **Use Specific Queries**: More specific requests = better fact-checking | |
2. **Test with Known Data**: Start with sites where you know the content | |
3. **Check Complex Tables**: Tables are great for testing accuracy | |
4. **Verify Names & Dates**: These are common error points | |
5. **Cross-Reference**: Compare with multiple sources when possible | |
## π¬ **Advanced Fact-Checking Tests:** | |
### **Financial Data Test** | |
``` | |
URL: https://finance.yahoo.com/quote/MSFT | |
Query: Create a detailed financial summary table with exact figures for Microsoft stock | |
Expected: Fact-checker should verify all numbers match the source exactly | |
``` | |
### **Statistical Data Test** | |
``` | |
URL: https://www.census.gov/quickfacts/fact/table/US | |
Query: Extract US population demographics with specific percentages | |
Expected: Fact-checker should confirm all demographic percentages are accurate | |
``` | |
### **Historical Data Test** | |
``` | |
URL: https://en.wikipedia.org/wiki/List_of_Presidents_of_the_United_States | |
Query: Create a table of the last 10 US presidents with their exact terms of office | |
Expected: Fact-checker should verify all dates and names are correct | |
``` | |
## π§ͺ **Test Scenarios** | |
### **1. News & Media Sites** | |
``` | |
URL: https://www.bbc.com/news | |
Query: Extract the top 5 news headlines with their summaries and create a table with columns: Headline, Category, Summary | |
``` | |
``` | |
URL: https://edition.cnn.com | |
Query: Find all breaking news items and organize them by topic/region in a structured format | |
``` | |
### **2. Financial Data Sites** | |
``` | |
URL: https://finance.yahoo.com/quote/AAPL | |
Query: Extract Apple stock information including current price, daily change, market cap, and any financial metrics into a summary table | |
``` | |
``` | |
URL: https://www.marketwatch.com/investing/stock/tsla | |
Query: Create a table with Tesla's key financial metrics: price, change, volume, market cap, P/E ratio | |
``` | |
### **3. E-commerce & Product Pages** | |
``` | |
URL: https://www.amazon.com/dp/B08N5WRWNW | |
Query: Extract product details including name, price, ratings, key features, and specifications in a structured format | |
``` | |
``` | |
URL: https://www.ebay.com/itm/123456789 | |
Query: Extract item details, price, seller information, and shipping details into a comparison-ready table | |
``` | |
### **4. Educational & Reference Sites** | |
``` | |
URL: https://en.wikipedia.org/wiki/Artificial_intelligence | |
Query: Extract the main definition, history timeline, and applications of AI. Create separate sections for each topic. | |
``` | |
``` | |
URL: https://en.wikipedia.org/wiki/List_of_countries_by_population | |
Query: Extract the population data table and create a new table showing top 10 most populous countries with their population and growth rate | |
``` | |
### **5. Government & Official Statistics** | |
``` | |
URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports | |
Query: Extract the latest COVID-19 statistics and create a summary table with key global figures | |
``` | |
``` | |
URL: https://www.census.gov/quickfacts | |
Query: Extract key demographic statistics for the United States and organize them into categories: Population, Economy, Geography | |
``` | |
### **6. Technology & Business News** | |
``` | |
URL: https://techcrunch.com | |
Query: Find the latest startup funding news and create a table with: Company Name, Funding Amount, Investors, Industry | |
``` | |
``` | |
URL: https://www.reuters.com/technology | |
Query: Extract top technology news and summarize each story in 2-3 sentences with key points | |
``` | |
### **7. Scientific & Research Sites** | |
``` | |
URL: https://www.nature.com/articles | |
Query: Extract recent scientific article titles, authors, and abstracts. Create a summary table organized by research field | |
``` | |
``` | |
URL: https://pubmed.ncbi.nlm.nih.gov/trending | |
Query: Find trending medical research topics and create a list with brief descriptions of each study's findings | |
``` | |
### **8. Sports & Entertainment** | |
``` | |
URL: https://www.espn.com/nba/standings | |
Query: Extract NBA team standings and create a table with: Team, Wins, Losses, Win Percentage, Conference Position | |
``` | |
``` | |
URL: https://www.imdb.com/chart/top | |
Query: Extract the top 10 movies from IMDb's top 250 list with ratings, year, and brief description | |
``` | |
### **9. Weather & Environmental Data** | |
``` | |
URL: https://weather.com/weather/today | |
Query: Extract current weather conditions and forecast data. Create a summary with temperature, conditions, and weekly outlook | |
``` | |
### **10. Real Estate & Property** | |
``` | |
URL: https://www.zillow.com/homes/for_sale | |
Query: Extract property listings with prices, locations, square footage, and key features into a comparison table | |
``` | |
## π― **Quick Test Samples (Copy & Paste Ready)** | |
### **Simple Test:** | |
``` | |
URL: https://httpbin.org/html | |
Query: Extract all text content and identify the page structure | |
``` | |
### **Table Extraction Test:** | |
``` | |
URL: https://www.w3schools.com/html/html_tables.asp | |
Query: Find all HTML tables on this page and convert them to a structured format with proper headers | |
``` | |
### **Complex Analysis Test:** | |
``` | |
URL: https://www.sec.gov/edgar/browse/?CIK=320193 | |
Query: Extract Apple Inc.'s recent SEC filings and create a table with: Filing Date, Document Type, Description | |
``` | |
### **International Site Test:** | |
``` | |
URL: https://www.bbc.co.uk/weather | |
Query: Extract UK weather information and create a regional breakdown of current conditions | |
``` | |
## π― **Interpreting Fact-Check Results:** | |
### **Accuracy Scores:** | |
- **9-10**: Highly accurate, minimal issues | |
- **7-8**: Generally accurate with minor corrections needed | |
- **5-6**: Moderate accuracy, several issues to address | |
- **3-4**: Low accuracy, significant problems found | |
- **1-2**: Poor accuracy, major fact-checking failures | |
### **Verification Status:** | |
- **β VERIFIED**: Claim matches source exactly | |
- **β οΈ PARTIALLY VERIFIED**: Claim is mostly correct but lacks nuance | |
- **β CANNOT VERIFY**: Claim not supported by source material | |
- **π¨ CONTRADICTED**: Claim directly contradicts source | |
Remember: The fact-checker is designed to be thorough and critical. Even high-quality analyses may receive suggestions for improvement! | |
""") | |
# Event handlers | |
analyze_btn.click( | |
fn=process_request, | |
inputs=[api_key_input, url_input, query_input], | |
outputs=output, | |
show_progress=True | |
) | |
factcheck_btn.click( | |
fn=fact_check_request, | |
inputs=[api_key_input], | |
outputs=factcheck_output, | |
show_progress=True | |
) | |
clear_btn.click( | |
fn=lambda: ("", "", "", "", ""), | |
outputs=[api_key_input, url_input, query_input, output, factcheck_output] | |
) | |
return app | |
if __name__ == "__main__": | |
# Create and launch the app | |
app = create_interface() | |
# Launch with enhanced configuration | |
app.launch( | |
share=True | |
) |