Spaces:
Sleeping
Sleeping
File size: 3,655 Bytes
bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a 48c5b47 bf6d94a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import openai
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from PyPDF2 import PdfReader
# Function to load and process the PDF document
def load_pdf(file):
# Load the PDF using LangChain's PyPDFLoader
loader = PyPDFLoader(file.name)
documents = loader.load()
return documents
# Summarization function using GPT-4
def summarize_pdf(file, openai_api_key):
# Set the API key dynamically
openai.api_key = openai_api_key
# Load and process the PDF
documents = load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings()
# Use LangChain's FAISS Vector Store to store and search the embeddings
vector_store = FAISS.from_documents(documents, embeddings)
# Create a RetrievalQA chain for summarization
llm = ChatOpenAI(model="gpt-4") # Using GPT-4 as the LLM
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for a summary of the document
response = qa_chain.run("Summarize the content of the research paper.")
return response
# Function to handle user queries and provide answers from the document
def query_pdf(file, user_query, openai_api_key):
# Set the API key dynamically
openai.api_key = openai_api_key
# Load and process the PDF
documents = load_pdf(file)
# Create embeddings for the documents
embeddings = OpenAIEmbeddings()
# Use LangChain's FAISS Vector Store to store and search the embeddings
vector_store = FAISS.from_documents(documents, embeddings)
# Create a RetrievalQA chain for querying the document
llm = ChatOpenAI(model="gpt-4") # Using GPT-4 as the LLM
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever()
)
# Query the model for the user query
response = qa_chain.run(user_query)
return response
# Define Gradio interface for the summarization
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("### ChatPDF and Research Paper Summarizer using GPT-4 and LangChain")
# Input field for API Key
with gr.Row():
openai_api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="Enter your OpenAI API key here")
with gr.Tab("Summarize PDF"):
with gr.Row():
pdf_file = gr.File(label="Upload PDF Document")
summarize_btn = gr.Button("Summarize")
summary_output = gr.Textbox(label="Summary", interactive=False)
summarize_btn.click(summarize_pdf, inputs=[pdf_file, openai_api_key_input], outputs=summary_output)
with gr.Tab("Ask Questions"):
with gr.Row():
pdf_file_q = gr.File(label="Upload PDF Document")
user_input = gr.Textbox(label="Enter your question")
answer_output = gr.Textbox(label="Answer", interactive=False)
user_input.submit(query_pdf, inputs=[pdf_file_q, user_input, openai_api_key_input], outputs=answer_output)
user_input.submit(None, None, answer_output) # Clear answer when typing new query
return demo
# Run Gradio app
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(debug=True) |