File size: 20,824 Bytes
0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b 252e084 6c6287b 0e828f7 6c6287b 0e828f7 6c6287b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertModel
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import IsolationForest
import gradio as gr
import warnings
warnings.filterwarnings('ignore')
class FraudDetectionTester:
def __init__(self, model_path='fraud_detection_model.pth'):
"""Initialize the fraud detection tester"""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.model_path = model_path
self.model = None
self.scaler = None
self.label_encoder = None
self.isolation_forest = None
# Load the model
self.load_model()
def create_bert_fraud_model(self, numerical_features_dim):
"""Recreate the BERT fraud detection model architecture"""
class BERTFraudDetector(nn.Module):
def __init__(self, bert_model_name, numerical_features_dim, dropout_rate=0.3):
super(BERTFraudDetector, self).__init__()
# BERT for text processing
self.bert = BertModel.from_pretrained(bert_model_name)
# Freeze BERT parameters for faster training (optional)
for param in self.bert.parameters():
param.requires_grad = False
# Unfreeze last few layers for fine-tuning
for param in self.bert.encoder.layer[-2:].parameters():
param.requires_grad = True
# Feature processing layers
self.text_projection = nn.Linear(self.bert.config.hidden_size, 256)
self.numerical_projection = nn.Linear(numerical_features_dim, 256)
# Anomaly detection features
self.anomaly_detector = nn.Sequential(
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
# Combined classifier
self.classifier = nn.Sequential(
nn.Linear(512 + 1, 256), # 256 + 256 + 1 (anomaly score)
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid()
)
def forward(self, input_ids, attention_mask, numerical_features):
# Process text with BERT
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
text_features = self.text_projection(bert_output.pooler_output)
# Process numerical features
numerical_features = self.numerical_projection(numerical_features)
# Anomaly detection
anomaly_score = self.anomaly_detector(numerical_features)
# Combine all features
combined_features = torch.cat([text_features, numerical_features, anomaly_score], dim=1)
# Final classification
fraud_probability = self.classifier(combined_features)
return fraud_probability.squeeze(), anomaly_score.squeeze()
return BERTFraudDetector('bert-base-uncased', numerical_features_dim)
def load_model(self):
"""Load the pre-trained fraud detection model"""
try:
print(f"π Loading model from {self.model_path}...")
# Add safe globals for sklearn objects
torch.serialization.add_safe_globals([
StandardScaler,
LabelEncoder,
IsolationForest
])
checkpoint = torch.load(self.model_path, map_location=self.device, weights_only=False)
# Load preprocessing objects
self.scaler = checkpoint['scaler']
self.label_encoder = checkpoint['label_encoder']
self.isolation_forest = checkpoint['isolation_forest']
# Create and load model
numerical_features_dim = 14 # Same as training
self.model = self.create_bert_fraud_model(numerical_features_dim)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.to(self.device)
self.model.eval()
print("β
Model loaded successfully!")
except FileNotFoundError:
print(f"β Error: Model file '{self.model_path}' not found!")
print("Make sure you have trained and saved the model first.")
raise
except Exception as e:
print(f"β Error loading model: {str(e)}")
raise
def tokenize_descriptions(self, descriptions, max_length=128):
"""Tokenize transaction descriptions for BERT"""
if hasattr(descriptions, 'tolist'):
descriptions = descriptions.tolist()
elif isinstance(descriptions, str):
descriptions = [descriptions]
elif not isinstance(descriptions, list):
descriptions = list(descriptions)
descriptions = [str(desc) for desc in descriptions]
encoded = self.tokenizer(
descriptions,
truncation=True,
padding=True,
max_length=max_length,
return_tensors='pt'
)
return encoded['input_ids'], encoded['attention_mask']
def preprocess_single_transaction(self, transaction):
"""Preprocess a single transaction for prediction"""
if isinstance(transaction, dict):
df = pd.DataFrame([transaction])
else:
df = pd.DataFrame(transaction)
# Feature engineering
df['amount_log'] = np.log1p(df['amount'])
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)
df['is_night'] = ((df['hour'] >= 22) | (df['hour'] <= 6)).astype(int)
df['high_frequency'] = (df['transaction_count_1h'] > 3).astype(int)
df['amount_deviation'] = abs(df['amount'] - df['avg_amount_1h']) / (df['avg_amount_1h'] + 1)
# Handle unknown categories
try:
df['merchant_category_encoded'] = self.label_encoder.transform(df['merchant_category'])
except ValueError:
df['merchant_category_encoded'] = 0
# Prepare numerical features
numerical_features = ['amount_log', 'hour', 'day_of_week', 'days_since_last_transaction',
'transaction_count_1h', 'transaction_count_24h', 'avg_amount_1h',
'location_risk_score', 'account_age_days', 'merchant_category_encoded',
'is_weekend', 'is_night', 'high_frequency', 'amount_deviation']
X_numerical = self.scaler.transform(df[numerical_features])
# Process text
df['processed_description'] = df['description'].astype(str).str.lower().str.replace(r'[^\w\s]', '', regex=True)
return df, X_numerical
def predict_fraud(self, transaction):
"""Predict fraud for a single transaction"""
try:
# Preprocess transaction
df, X_numerical = self.preprocess_single_transaction(transaction)
# Tokenize description
processed_descriptions = df['processed_description'].tolist()
input_ids, attention_masks = self.tokenize_descriptions(processed_descriptions)
# Make prediction
with torch.no_grad():
batch_num = torch.tensor(X_numerical).float().to(self.device)
batch_ids = input_ids.to(self.device)
batch_masks = attention_masks.to(self.device)
fraud_prob, anomaly_score = self.model(batch_ids, batch_masks, batch_num)
# Get isolation forest prediction
isolation_pred = self.isolation_forest.decision_function(X_numerical)
# Handle single prediction
if isinstance(fraud_prob, torch.Tensor):
if fraud_prob.dim() == 0:
fraud_prob_val = fraud_prob.item()
anomaly_score_val = anomaly_score.item()
else:
fraud_prob_val = fraud_prob[0].item()
anomaly_score_val = anomaly_score[0].item()
else:
fraud_prob_val = float(fraud_prob)
anomaly_score_val = float(anomaly_score)
# Combine predictions
combined_score = (0.6 * fraud_prob_val +
0.3 * (1 - (isolation_pred[0] + 0.5)) +
0.1 * anomaly_score_val)
return {
'fraud_probability': float(combined_score),
'is_fraud_predicted': bool(combined_score > 0.5),
'risk_level': self.get_risk_level(combined_score),
'anomaly_score': float(anomaly_score_val),
'bert_score': float(fraud_prob_val),
'isolation_score': float(isolation_pred[0])
}
except Exception as e:
return {'error': str(e)}
def get_risk_level(self, score):
"""Determine risk level based on fraud probability"""
if score > 0.8:
return 'CRITICAL'
elif score > 0.6:
return 'HIGH'
elif score > 0.4:
return 'MEDIUM'
elif score > 0.2:
return 'LOW'
else:
return 'MINIMAL'
# Initialize the fraud detection model
print("Initializing fraud detection model...")
try:
fraud_detector = FraudDetectionTester('fraud_detection_model.pth')
model_loaded = True
except Exception as e:
print(f"Failed to load model: {e}")
model_loaded = False
def predict_transaction_fraud(
transaction_id,
amount,
merchant_category,
description,
hour,
day_of_week,
days_since_last_transaction,
transaction_count_1h,
transaction_count_24h,
avg_amount_1h,
location_risk_score,
account_age_days
):
"""Gradio interface function for fraud prediction"""
if not model_loaded:
return "β Model not loaded. Please ensure 'fraud_detection_model.pth' is available.", "", "", "", "", ""
# Create transaction dictionary
transaction = {
'transaction_id': transaction_id,
'amount': amount,
'merchant_category': merchant_category,
'description': description,
'hour': hour,
'day_of_week': day_of_week,
'days_since_last_transaction': days_since_last_transaction,
'transaction_count_1h': transaction_count_1h,
'transaction_count_24h': transaction_count_24h,
'avg_amount_1h': avg_amount_1h,
'location_risk_score': location_risk_score,
'account_age_days': account_age_days
}
# Get prediction
result = fraud_detector.predict_fraud(transaction)
if 'error' in result:
return f"β Error: {result['error']}", "", "", "", "", ""
# Format results
fraud_prob = result['fraud_probability']
prediction = "π¨ FRAUD DETECTED" if result['is_fraud_predicted'] else "β
LEGITIMATE"
risk_level = result['risk_level']
# Create risk meter visualization
risk_bar = "β" * int(fraud_prob * 20) + "β" * (20 - int(fraud_prob * 20))
risk_meter = f"[{risk_bar}] {fraud_prob*100:.1f}%"
# Detailed scores
detailed_scores = f"""
π€ BERT Score: {result['bert_score']:.4f}
ποΈ Isolation Score: {result['isolation_score']:.4f}
π Anomaly Score: {result['anomaly_score']:.4f}
"""
# Summary
summary = f"""
π° Amount: ${amount:.2f}
πͺ Category: {merchant_category}
π Description: {description}
π― Fraud Probability: {fraud_prob:.4f} ({fraud_prob*100:.2f}%)
π Risk Level: {risk_level}
"""
return prediction, f"{fraud_prob:.4f}", risk_level, risk_meter, detailed_scores, summary
def load_sample_transaction(sample_type):
"""Load predefined sample transactions"""
samples = {
"Normal Grocery Purchase": {
'transaction_id': 'NORMAL_001',
'amount': 45.67,
'merchant_category': 'grocery',
'description': 'WALMART SUPERCENTER CA 1234',
'hour': 14,
'day_of_week': 2,
'days_since_last_transaction': 1.0,
'transaction_count_1h': 1,
'transaction_count_24h': 3,
'avg_amount_1h': 50.0,
'location_risk_score': 0.1,
'account_age_days': 730
},
"Suspicious High Amount": {
'transaction_id': 'SUSPICIOUS_001',
'amount': 2999.99,
'merchant_category': 'online',
'description': 'SUSPICIOUS ELECTRONICS STORE XX 9999',
'hour': 3,
'day_of_week': 6,
'days_since_last_transaction': 60.0,
'transaction_count_1h': 12,
'transaction_count_24h': 25,
'avg_amount_1h': 150.0,
'location_risk_score': 0.95,
'account_age_days': 15
},
"Coffee Shop Purchase": {
'transaction_id': 'COFFEE_001',
'amount': 8.50,
'merchant_category': 'restaurant',
'description': 'STARBUCKS COFFEE NY 5678',
'hour': 8,
'day_of_week': 1,
'days_since_last_transaction': 0.5,
'transaction_count_1h': 1,
'transaction_count_24h': 4,
'avg_amount_1h': 8.50,
'location_risk_score': 0.2,
'account_age_days': 1095
},
"Foreign ATM Withdrawal": {
'transaction_id': 'ATM_001',
'amount': 500.00,
'merchant_category': 'atm',
'description': 'ATM WITHDRAWAL FOREIGN COUNTRY 0000',
'hour': 23,
'day_of_week': 0,
'days_since_last_transaction': 0.1,
'transaction_count_1h': 5,
'transaction_count_24h': 8,
'avg_amount_1h': 200.0,
'location_risk_score': 0.8,
'account_age_days': 365
}
}
if sample_type in samples:
sample = samples[sample_type]
return (
sample['transaction_id'],
sample['amount'],
sample['merchant_category'],
sample['description'],
sample['hour'],
sample['day_of_week'],
sample['days_since_last_transaction'],
sample['transaction_count_1h'],
sample['transaction_count_24h'],
sample['avg_amount_1h'],
sample['location_risk_score'],
sample['account_age_days']
)
return [""] * 12
# Create Gradio interface
with gr.Blocks(title="π¨ Fraud Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¨ Advanced Fraud Detection System
### Powered by BERT and Machine Learning
This system analyzes financial transactions using advanced AI to detect potential fraud.
Enter transaction details below or use sample transactions to test the system.
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## π Transaction Details")
# Sample transaction selector
with gr.Row():
sample_dropdown = gr.Dropdown(
choices=["Normal Grocery Purchase", "Suspicious High Amount", "Coffee Shop Purchase", "Foreign ATM Withdrawal"],
label="π― Load Sample Transaction",
value="Normal Grocery Purchase"
)
load_sample_btn = gr.Button("π₯ Load Sample", variant="secondary")
# Transaction inputs
with gr.Row():
transaction_id = gr.Textbox(label="Transaction ID", value="TEST_001")
amount = gr.Number(label="π° Amount ($)", value=45.67, minimum=0)
with gr.Row():
merchant_category = gr.Dropdown(
choices=["grocery", "restaurant", "gas_station", "retail", "online", "atm", "pharmacy", "entertainment"],
label="πͺ Merchant Category",
value="grocery"
)
description = gr.Textbox(label="π Transaction Description", value="WALMART SUPERCENTER CA 1234")
with gr.Row():
hour = gr.Slider(label="π Hour of Day", minimum=0, maximum=23, value=14, step=1)
day_of_week = gr.Slider(label="π
Day of Week (0=Mon, 6=Sun)", minimum=0, maximum=6, value=2, step=1)
with gr.Row():
days_since_last = gr.Number(label="π Days Since Last Transaction", value=1.0, minimum=0)
transaction_count_1h = gr.Number(label="π’ Transactions (1h)", value=1, minimum=0)
with gr.Row():
transaction_count_24h = gr.Number(label="π’ Transactions (24h)", value=3, minimum=0)
avg_amount_1h = gr.Number(label="π΅ Avg Amount (1h)", value=50.0, minimum=0)
with gr.Row():
location_risk_score = gr.Slider(label="π Location Risk Score", minimum=0, maximum=1, value=0.1, step=0.01)
account_age_days = gr.Number(label="π€ Account Age (days)", value=730, minimum=0)
predict_btn = gr.Button("π Analyze Transaction", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("## π Fraud Analysis Results")
prediction_output = gr.Textbox(label="π― Prediction", interactive=False)
fraud_prob_output = gr.Textbox(label="π Fraud Probability", interactive=False)
risk_level_output = gr.Textbox(label="β οΈ Risk Level", interactive=False)
risk_meter_output = gr.Textbox(label="π Risk Meter", interactive=False)
detailed_scores_output = gr.Textbox(label="π Detailed Scores", interactive=False, lines=4)
summary_output = gr.Textbox(label="π Summary", interactive=False, lines=6)
# Event handlers
predict_btn.click(
fn=predict_transaction_fraud,
inputs=[
transaction_id, amount, merchant_category, description, hour, day_of_week,
days_since_last, transaction_count_1h, transaction_count_24h, avg_amount_1h,
location_risk_score, account_age_days
],
outputs=[
prediction_output, fraud_prob_output, risk_level_output,
risk_meter_output, detailed_scores_output, summary_output
]
)
load_sample_btn.click(
fn=load_sample_transaction,
inputs=[sample_dropdown],
outputs=[
transaction_id, amount, merchant_category, description, hour, day_of_week,
days_since_last, transaction_count_1h, transaction_count_24h, avg_amount_1h,
location_risk_score, account_age_days
]
)
gr.Markdown("""
---
### π How to Use:
1. **Load Sample**: Choose a predefined sample transaction to quickly test the system
2. **Enter Details**: Fill in transaction information manually or modify loaded samples
3. **Analyze**: Click "Analyze Transaction" to get fraud detection results
### π― Understanding Results:
- **Fraud Probability**: Higher values indicate higher fraud risk (0-1 scale)
- **Risk Levels**: MINIMAL β LOW β MEDIUM β HIGH β CRITICAL
- **Risk Meter**: Visual representation of fraud probability
- **Detailed Scores**: Individual model component scores
### β οΈ Model Requirements:
Ensure `fraud_detection_model.pth` is available in the same directory as this script.
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |