|
import streamlit as st |
|
from langchain_community.document_loaders import PyPDFLoader |
|
import openai |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain.chat_models import ChatOpenAI |
|
import pandas as pd |
|
from datetime import datetime, timedelta |
|
|
|
st.title('Educational Assistant') |
|
st.header('Summary, Quiz Generator, Q&A, and Topics to be Covered') |
|
st.sidebar.title('Drop your PDF here') |
|
|
|
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key", type="password") |
|
user_file_upload = st.sidebar.file_uploader(label='', type='pdf') |
|
option = st.sidebar.radio("Choose an option", ('Generate Summary', 'Generate Quiz', 'Ask a Question', 'Topics to be Covered')) |
|
|
|
if openai_api_key: |
|
openai.api_key = openai_api_key |
|
|
|
if user_file_upload: |
|
pdf_data = user_file_upload.read() |
|
with open("temp_pdf_file.pdf", "wb") as f: |
|
f.write(pdf_data) |
|
loader = PyPDFLoader("temp_pdf_file.pdf") |
|
data = loader.load_and_split() |
|
|
|
prompt_4 = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a smart assistant. Analyze the user's PDF and generate 7 topics with detailed themes for the next 7 days. Output format: 'Day X: Task\tTheme'"), |
|
("user", "{data}") |
|
] |
|
) |
|
llm_topics = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) |
|
output_parser = StrOutputParser() |
|
chain_4 = prompt_4 | llm_topics | output_parser |
|
|
|
if option == 'Topics to be Covered': |
|
topics_response = chain_4.invoke({'data': data}) |
|
topics_list = topics_response.split("\n") |
|
start_date = datetime.today() |
|
table_data = [] |
|
|
|
for i in range(7): |
|
day_date = start_date + timedelta(days=i) |
|
topic_parts = topics_list[i].split('\t') if i < len(topics_list) else [f"Day {i+1}: you will figure out my llm program", "you will figure out my llm program"] |
|
table_data.append([day_date.strftime("%d-%b-%y"), topic_parts[0], topic_parts[1]]) |
|
|
|
df = pd.DataFrame(table_data, columns=["Day", "Tasks", "Theme"]) |
|
st.write("### Topics to be Covered in the Next 7 Days") |
|
st.table(df) |
|
else: |
|
st.sidebar.warning("Please enter your OpenAI API Key to proceed.") |
|
|