EngToJap-2.0 / app.py
shukdevdatta123's picture
Update app.py
13c2ee0 verified
import openai
import os
import streamlit as st
from PIL import Image
from gtts import gTTS
import tempfile
import shutil
import re
# Function to translate text to any language and provide pronunciation (Romaji or phonetic)
def translate_to_language(api_key, text, language):
"""
Translates English text to the target language using OpenAI's API and provides pronunciation.
"""
# Validate input
if not api_key:
return "Error: API key is missing.", None
if not text:
return "Error: Input text is empty.", None
# Set the OpenAI API key
openai.api_key = api_key
# Define the messages for the chat model
messages_translation = [
{"role": "system", "content": "You are a helpful translator."},
{"role": "user", "content": f"Translate the following English text to {language}:\n\n{text}"}
]
try:
# Call the OpenAI API to get the translation
response_translation = openai.ChatCompletion.create(
model="gpt-4o", # Use the correct endpoint for chat models
messages=messages_translation,
max_tokens=300,
temperature=0.5
)
# Extract the translated text
translated_text = response_translation.choices[0].message['content'].strip()
# Define the messages for the pronunciation (phonetic) request
messages_pronunciation = [
{"role": "system", "content": f"You are a helpful assistant who provides the pronunciation in phonetic script of {language} text."},
{"role": "user", "content": f"Provide the pronunciation for the following {language} text:\n\n{translated_text}"}
]
# Call the OpenAI API to get the pronunciation
response_pronunciation = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages_pronunciation,
max_tokens=300,
temperature=0.5
)
# Extract the pronunciation from the response
pronunciation = response_pronunciation.choices[0].message['content'].strip()
return translated_text, pronunciation
except openai.error.OpenAIError as e:
return f"OpenAI API error: {str(e)}", None
except Exception as e:
return f"An unexpected error occurred: {str(e)}", None
# Function to clean pronunciation text
def clean_pronunciation(pronunciation_text):
# Remove introductory phrases like "Sure! The pronunciation... is:"
pronunciation_cleaned = re.sub(r"^Sure! The pronunciation for the.*?text.*?is[:]*", "", pronunciation_text).strip()
return pronunciation_cleaned
# Function to generate audio file from text using gTTS
def generate_audio_from_text(text, language_code):
tts = gTTS(text, lang=language_code) # Use the appropriate language code
# Save audio to a temporary file
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio_file.name)
return temp_audio_file.name
# Streamlit UI
st.title("English to Multiple Language Translator with Pronunciation")
st.markdown("Translate English text into Japanese, Spanish, Italian, and German and get their pronunciation (phonetic).")
translateimg = Image.open("Untitled.png") # Ensure the file is in the correct directory
st.image(translateimg, use_container_width=True) # Adjust the size as per preference
# Access the API key from Hugging Face Secrets
api_key = os.getenv("OPENAI_API_KEY")
# Input field for the text
english_text = st.text_area("Enter the English text to translate")
# Language selection dropdown
languages = ["Japanese", "Spanish", "Italian", "German"]
selected_language = st.selectbox("Select the target language", languages)
# Initialize the progress bar and progress text above the translate button
progress_bar = st.progress(0)
progress_text = st.empty() # To show the progress text
# Mapping of languages to their corresponding language codes for gTTS
language_codes = {
"Japanese": "ja",
"Spanish": "es",
"Italian": "it",
"German": "de"
}
# Button to trigger the translation
if st.button("Translate"):
if api_key and english_text:
try:
# Step 1: Request translation
progress_text.text(f"Translating text to {selected_language}...")
progress_bar.progress(33) # Update progress bar to 33%
# Translate based on the selected language
translated_text, pronunciation = translate_to_language(api_key, english_text, selected_language)
# Step 2: Check if translation was successful
if pronunciation:
progress_text.text(f"Generating {selected_language} pronunciation...")
progress_bar.progress(66) # Update progress bar to 66%
# Clean pronunciation (remove unnecessary parts)
cleaned_pronunciation = clean_pronunciation(pronunciation)
st.markdown("### Translation Result:")
st.write(f"**English Text:** {english_text}")
st.write(f"**{selected_language} Translation:** {translated_text}")
st.write(f"**Pronunciation:** {cleaned_pronunciation}")
# Save the result in a text file
result_text = f"English Text: {english_text}\n\n{selected_language} Translation: {translated_text}\nPronunciation: {cleaned_pronunciation}"
# Write to a text file
with open("translation_result.txt", "w") as file:
file.write(result_text)
# Create a download button for the user to download the file
with open("translation_result.txt", "rb") as file:
st.download_button(
label="Download Translation Result",
data=file,
file_name="translation_result.txt",
mime="text/plain"
)
# Step 3: Generate audio for pronunciation
progress_text.text(f"Generating pronunciation audio for {selected_language}...")
progress_bar.progress(100) # Update progress bar to 100%
# Generate audio for the cleaned pronunciation in the selected language
audio_file_path = generate_audio_from_text(cleaned_pronunciation, language_codes[selected_language])
# Provide a button to play the pronunciation audio
st.audio(audio_file_path, format="audio/mp3")
translateimg2 = Image.open("v3.png") # Ensure the file is in the correct directory
st.image(translateimg2, width=150) # Adjust the size as per preference
else:
st.error(translated_text) # Display error message if API call fails
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
if not api_key:
st.error("API key is missing. Please add it as a secret in Hugging Face Settings.")
else:
st.error("Please provide text to translate.")