File size: 4,070 Bytes
5dbe551
beecb06
 
 
97b296f
beecb06
 
 
 
 
 
5dbe551
beecb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97b296f
beecb06
 
 
 
 
 
 
 
ade4954
beecb06
 
 
 
 
ade4954
beecb06
ade4954
beecb06
 
ade4954
beecb06
 
 
 
 
 
 
 
 
ade4954
beecb06
 
ade4954
beecb06
 
 
 
 
ade4954
beecb06
 
ade4954
beecb06
 
ade4954
beecb06
 
 
 
 
5dbe551
beecb06
 
97b296f
beecb06
37acc53
 
 
beecb06
 
 
 
 
97b296f
37acc53
 
beecb06
37acc53
4905934
beecb06
 
 
 
 
 
 
 
 
 
 
 
 
 
37acc53
 
beecb06
 
 
 
 
 
5dbe551
beecb06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
from PIL import Image
from transformers import (
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)

# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
    """
    Returns an HTML snippet for a thin animated progress bar with a label.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# Model and Processor Setup - CPU version
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float32  # Using float32 for CPU compatibility
).to("cpu").eval()

# Main Inference Function
def extract_medicines(image_files):
    """Extract medicine names from prescription images."""
    if not image_files:
        return "Please upload a prescription image."
    
    images = [load_image(image) for image in image_files]
    
    # Specific prompt to extract only medicine names
    text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
    
    messages = [{
        "role": "user",
        "content": [
            *[{"type": "image", "image": image} for image in images],
            {"type": "text", "text": text},
        ],
    }]
    
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=images,
        return_tensors="pt",
        padding=True,
    ).to("cpu")
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    buffer = ""
    yield progress_bar_html("Extracting Medicine Names")
    
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Medicine Name Extractor")
    gr.Markdown("Upload prescription images to extract medicine names")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.File(
                label="Upload Prescription Image(s)", 
                file_count="multiple",
                file_types=["image"]
            )
            extract_btn = gr.Button("Extract Medicine Names", variant="primary")
        
        with gr.Column():
            output = gr.Markdown(label="Extracted Medicine Names")
    
    extract_btn.click(
        fn=extract_medicines,
        inputs=image_input,
        outputs=output
    )
    
    gr.Examples(
        examples=[
            ["examples/prescription1.jpg"],
            ["examples/prescription2.jpg"],
        ],
        inputs=image_input,
        outputs=output,
        fn=extract_medicines,
        cache_examples=True,
    )
    
    gr.Markdown("""
    ### Notes:
    - This app is optimized to run on CPU
    - Upload clear images of prescriptions for best results
    - Only medicine names will be extracted
    """)

demo.queue()
demo.launch(debug=True)