Spaces:
Running
Running
File size: 4,070 Bytes
5dbe551 beecb06 97b296f beecb06 5dbe551 beecb06 97b296f beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 ade4954 beecb06 5dbe551 beecb06 97b296f beecb06 37acc53 beecb06 97b296f 37acc53 beecb06 37acc53 4905934 beecb06 37acc53 beecb06 5dbe551 beecb06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Model and Processor Setup - CPU version
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float32 # Using float32 for CPU compatibility
).to("cpu").eval()
# Main Inference Function
def extract_medicines(image_files):
"""Extract medicine names from prescription images."""
if not image_files:
return "Please upload a prescription image."
images = [load_image(image) for image in image_files]
# Specific prompt to extract only medicine names
text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
).to("cpu")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Extracting Medicine Names")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Medicine Name Extractor")
gr.Markdown("Upload prescription images to extract medicine names")
with gr.Row():
with gr.Column():
image_input = gr.File(
label="Upload Prescription Image(s)",
file_count="multiple",
file_types=["image"]
)
extract_btn = gr.Button("Extract Medicine Names", variant="primary")
with gr.Column():
output = gr.Markdown(label="Extracted Medicine Names")
extract_btn.click(
fn=extract_medicines,
inputs=image_input,
outputs=output
)
gr.Examples(
examples=[
["examples/prescription1.jpg"],
["examples/prescription2.jpg"],
],
inputs=image_input,
outputs=output,
fn=extract_medicines,
cache_examples=True,
)
gr.Markdown("""
### Notes:
- This app is optimized to run on CPU
- Upload clear images of prescriptions for best results
- Only medicine names will be extracted
""")
demo.queue()
demo.launch(debug=True) |